
LEAST SQUARES ADJUSTMENT
A MODERN APPROACH

by
PETER MEISSL

MITTEILUNGEN
der geodatischen Institute der Techn ischen Universität Graz

Folge 43

Graz, 1982



Herausgeber:
Geodätische Institute der Technischen Universjtät Graz

Redaktion für diese Folge:
Abteilung für Mathematische Geodäsie und Geoinformatik
des Institutes für Theoretische Geodäsie

Druck und Herstellung:
Druck— und Kopierzentrum der Technischen Universität Graz

Adresse:
Technische Universität Graz
Rechbauerstrae 12
A—SOlO Graz, Osterreich.

Mit freundlicher Genehmigung der Geodätischen Institute der Technischen
Universität Graz wurde diese Folge am Institut für Geodäsie und Geoinfor-
mation der Universität Bonn eingescannt.

Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Verwertung
in anderen als den gesetzlich zugelassenen Fällen bedarf deshalb der vorheri-
gen schriftlichen Einwilligung der Herausgeben.

All rights reserved. No part of this book may be reproduced, in any form or
by any means, without permission in writing from the publisher.



Preface

For his lectures at the Tongji University in Shanghai and at other
institutions in China in November — December 1981, Peter Meissl prepared a set
of lecture notes on contemporary least—squares adjustment and applications.
Subsequently he worked on correcting and expanding them, but this was
interrupted by his tragic death on May 22, 1982. (For Peter Meissi’s life and
work, the reader is referred to his biography by Franz Ailmer, Mitteilungen der
geodatischen Institute der Technischen Universität Graz, Folge 44, t983.)

In view of the unique importance of this work, the Institute of Theoretical
Geodesy decided to edit the manuscript posthumously and to publish the book in
the series of the Geodetic Institutes of the Technical University, Graz,
although Peter Meiss] himself would certainly have included additional topics
such as inner adjustment theory, expanded others such as the theory of large
networks, and polished the manuscript much more before being satisfied with its
publication.

The finishing of the book is due to Peter Meissl’s closest associates:
Dr. Norbert Bartelme, Dr. Helmut Fuchs, Dr. Bernhard Hofmann—Wellenhof,
DipJ.—Ing. Wolf—Dieter Schuh and Dipl.—Ing. Manfred Wieser. In addition to being
responsible for the careful editing of the manuscript, they also prepared the
printing text using the word processing facilities of the computer
WANG 2200 MVP.

A glance at the table of contents shows that this book is a thoroughly
modern text on least—squares adjustment. In the contemporary spirit, the usual
linear algebra is treated in the context of general linear spaces, which makes
possible an easy transition to Hubert space important for advanced topics. Also
modern is the division into an algebraic and geometric approach (without
statistics) and a stochastic approach, including statistical tests. Applications
to Doppler observations, large networks, geodetic data bases, and splines
essentially increase the practical usefulness. Although the book develops
adjustment theory in a systematic and self—contained way, it will be best
appreciated by readers who already have some elementary previous knowledge’of
adjustment computations.

The book needs no recommendation. Both students and research workers will
find it indispensable. It is a fitting memorial of a great scientist.

Helmut Moritz
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A. THE ALGEBRAIC AND GEOMETRIC APPROACH TOWARD LEAST SQUARES

ADJUSTMENT

1.Vector spaces.

Li. Definition.

A real vector space (also called real linear space) is a set of elements, called

vectors, having the following properties. If a1,... ,am are vectors of the

vector space V, and if Z1,. ..,Z are real numbers, then the linear combination

÷ . .. ÷ Za

must be defined and must be an element of V.

Remark. The above definition is logically not complete. A set of familiar

computational rules must be postulated: fa+b) La ÷ Lb, (Z+)a a +

).fa) = tt)a, Ia = a. By the way, the expression Za may equally well be written

as a2,.

It is seen that in a vector space essentially two mathematical operations are

available, multiplication of a vector by a scalar, and addition of two vectors.

The neutral element of scalar multiplication is the real number I. The neutral

element of addition is th.e zero vector. It is obtained either as Oa or as a—a.

Remark on notation. In the first sections we shall consistently use upper case

Latin letters for vector spaces, lower case Latin letters for vectors, and lower

A – 1



- A.I.2 —

case creek letters for scalars. In later chapters the rather sparse notational

resources of the western world must be allocated differently.

1.2. Examples of vector spaces.

1.2.1. R, the real line is a vector space.

1.2.2. R, the set of n—tuples

a = (,. . .

forms a vector space. The real numbers x. are called components. Scalar

multiplication and addition are defined component—wise in an obvious and

familiar way.

1.2.3. The set of all linear forms

a = + ... +

in n variables . . ,, is a vector space.

1.2.4. The set of all polynomi1

a +
+ .. . ÷

in one variable forms a vector space. The x. are called coefficients. Note

A – 2
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that multiplication of two polynomials does not correspond to a characteristic

structural property of a vector space. It is an additional feature of spaces of

polynomials which is exploited in polynomial algebra.

1.2.5. The set of continuous functions f() defined on an interval J3 is a

vector space. The scalar multiple of a continuous function is continuous; so is

the sum of two continuous functions.

1.2.6. The set of all solutions to a linear homogeneous system

111 + • + 1mm = 0

211 + + 2mm

n11 + ÷ nmm = 0

1.2.?. A subset U of a vector space V may be a vector space by itself. Such a

subset U is called a (vector—) subspace of V. An example is the set of all

polynomials of degree n. This set is a subspace of the space of all polynomials

introduced in 1.2.4. In turn, the space of all polynomials may be seen as a

subspace of the space of continuous functions.

1.2.8. If V is a vector space, and if a11... ,am are vectors in V, then the set U

of all linear combinations

+ . . . +

A – 3
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is a vector space. It is called the linear span of a11.. .,am. It is a subspace

of V. In symbols

U spanfa11...,a)

It will be important to investigate conditions under which UV.

1.2.9 Translations in the plane. Consider the two-dimensional plane as the set

of its points. The points are not vectors. There is no meaningful way to define

e.g. the sum of two points. Thus, the plane considered as the set of its points

is not a vector space. Consider now a common translation of all points in the

plane. All points move the same distance, and in the same direction along

parallel lines. Such a translation is represented by an arrow. An arrow has a

direction and a length. If we want to know the image of a point P under the

translation we place the tail of the arrow at P and its tip will show the new

position P’ . The translations form a vector space. A translation can be

multiplied by a scalar in an obvious way; two translations can be added

according to the familiar parallelogram—rule. Thus translations can be linearly

combined. See figure 1.1.

/ 2a
/

/
/

/
/

/

//
Fig. 1.1 Vectors as arrows
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If one chooses an arbitrary point 0 as a reference point, then any point P in

the plane is uniquely identified by the vector translating 0 into P. This vector

is called position vector. In this way the plane is mapped onto the vector space

(of translations). In sloppy, but convenient language, one then identifies the

plane with this vector space. One should, however, bear in mind that this

identification relies on the arbitrary choice of the reference point 0.

1.3. Linear dependence and independence.

The vectors a1,... ,a, are called linearly dependent if there exist scalars

not all equal to zero, such that

÷ .. . + = 0

Linear dependence of vectors means that the zero vector can be obtained by a

nontrivial linear combination.

Vectors a11.. .,a which are not linearly dependent are called linearly

independent. The zero vector can only be obtained by the trivial linear

combination. Such a linear combination has all Vs equal to zero.

It is seen that the vectors a1,.. .,a are linearly independent if

÷ . . . ÷ 0

implies

A – 5



If a vector b is a linear combination of vectors a1,...

b 1a1 + ... ÷

then b is called linearly dependent of a1,.. .,am. The vector b is then a member

of spanfa1,.. .,am). The m÷1 vectors a11. ..,am,b are necessarily linearly

dependent.

1.4. Bases.

1.4.1. Definition. A set of linearly independent vectors e1,. ..,e, is called a

basis of V if any vector x in V can be expressed as a linear combination

x 1e1 + . . . ÷

The numbers
,

are called coordinates of the vector x with respect to the

basis e11. ..,e. It follows that V is spanned by the linearly independent

vectors e11. .,e:

V spanfe11. . .,e)

A – 6
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The coordinates of a vector with respect to a basis are unique. For suppose that

x = 1e1 ÷ . . . ÷

x ÷ . . . ÷

By subtracting the two equations a linear combination yielding the zero vector

is obtained. The coefficients of this linear combination are (‘—), i=1,...,n.

From the linear independence of the basis vectors one infers that
=

i=1,. . .,n.

1.4.2. Finite dimensional vector spaces. A vector space having a finite basis is

called finite dimensional. The choice of a basis is not unique, however the

number of vectors in a basis is unique. It is called the dimension of V. The

proof of the uniqueness of the dimension is not entirely trivial. If two bases

e11. . .,e and ej,. . . ,e are given in V, and if nm is assumed, one can

successively exchange unprimed vectors against primed vectors until a basis of n

primed vectors is obtained. The details of the proof are omitted.

1.4.3. Examples of bases. (Confer section 1.2 on examples of vector spaces.)

1.4.3.1. Any nonzero number of R forms a basis of R. If the vector I is chosen

as basis, any vector has a coordinate equal to itself. Hence I is called the

natural basis of R.

1.4.3.2. The vector space R of n—tuples introduced in 1.2.2 also possesses a

A – 7
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natural basis. It is given by

(1,0,.. .,0)

(0,1,.. .,0)

(0,0,.. .,1)

The coordinates x. of an n—tuple a are then identical to the components of a.

1.4.3.3. The polynomials f,x,x2,.. .,x form a natural basis of the space of

polynomials of degree n. The coordinates of a polynomial are then equal to its

coefficients.

1.4.3.4. The space of all polynomials and the space of continuous functions over

do not have a finite bases. These spaces are infinite dimensional.

1.4.3.5. Two arrows having neither the same nor opposite directions represent a

basis for the arrows (translations) in the plane.

1.4.4. Isomorphism between all vector spaces of

n—dimensional vector space, and if a basis

between V and R is established. Remember

any vector in V is uniquely mapped onto an

trivially also true. The basis vectors of V

vectors of R. The mapping between V and R

dimensionn. If V is a general

e1,. ..,e is chosen, a correspondence

that coordinates are unique. Hence

n—tuple in R. The converse is

are mapped onto the natural basis

preserves the linear structure:

A – 8
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Linear combinations are mapped onto ]inear combinations with identical scalar

coefficients. If x,yeV have coordinates , i=I, . . .,n, then x÷y has

coordinates . In view of the preservation of the linear structure, the

mapping is called an isomorphisin.

It is seen that all n—dimensional vector spaces are isomorphic to R. It

suffices to study the structure of R in order to learn everything about finite

dimensional vector spaces.

Remark. The correspondence between V and R depends on the choice of a basis

e11.. .,e in V. A different basis leads to a different mapping. There are as

many different isomorphic mappings between V and R as there are bases in V!

1.5. Linear equations.

The question whether a vector b€R is a linear combination of vectors a11...

out of R leads to a system of n linear equations in m unknowns. The question is

whether there are scalars
,. . . ‘m such that

÷
...

(We prefer now to write the scalar factors to the right of the vectors a. .

Let a, j1,. ..,m,and b be represented in terms of coordinates with respect to

the natura] basis:

A – 9
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1j
f3

t2

...

tin j

Then the following set of equations must hold:

ii’i + ÷ tXlmm P1

ti211 + + ti2nI’m P2

tin 11 + ÷ =

If b equals the zero vector, the system is called homogeneous. Otherwise it is

called inhomogeneous. If a homogeneous system has only the zero solution

j=1,. . . ,m, then the vectors a are linearly independent.

A linear system may also be viewed as a system of equations for forms: Find

values for the unknowns such that the forms

+ •

+ tiimn, i1,. . .

A – 10
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evaluated for these give the numbers Forms can be viewed as vectors. The

above forms are represented by vectors

& Cct11.. .,x)

Also an equation

it1 + ... + Xjfl

can be put in correspondence with a vector, n.amely with the m+1 dimensional

vector

ta11)
= it•

One may start to form linear combinations of these vectors which result in very

simple vectors (equations). This is the idea behind the familiar elimination

procedures. The final stage of the Gauss—Jordan elimination procedure looks as

follows.

A – 11
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÷ l,r+1r÷1 ÷ + ,nim
=

+ 2,r+1r÷I ÷ +
=

÷ ,t+1’t+1 + + ,m’m

—

t÷1

0=0

0=0

The vectors (equations) of the final stage are linear combinations of those of

the initial system. However the converse is also true because any step during

the Gauss—Jordan algorithm is reversible. Hence the equations of the initial and

the last stage span the same space. The systems of equations are equivalent.

Remark. It may not always be possible to obtain a final stage of equations in

which the first r unknowns fl,.. .,,.
are isolated as shown above. A reordering

of equations and/or unknowns may be necessary in order to ensure the validity of

the above final system.

A – 12
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We introduce the matrix of the homogeneous system. It is a rectangular array A

of elements

11 12 1m

21 22

n1 n2 nm

We also introduce the “augmented matrix of the inhoinogeneous system

11 t2 fm

2I 22 2m

fA,b)

nl n2 nm

A matrix can be seen as a collection of urow vectors”, and, alternatively, as a

collection of “column vectors”. We shall shortly talk of “rows” and “columns” of

a matrix. The following facts are easily deduced from the structure of the

GaussJordan reduced system.

(1) The matrix A has r linearly independent rows.

A – 13
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(2) The matrix A has r linearly independent columns. It is seen that the number

of linearly independent rows and that of linearly independent columns coincide.

This number is called the rank of A. It is denoted

r ranktA)

(3) The solutions x=f11. . . ,) of the homogeneous system form an m — r

dimensional vector subspace of V,,. A basis is provided by the columns of the

following matrix.

r r r
I,r+1 t,r+2

t t r
2,r÷1 2,r+2

r r r
r,r÷1 r,r+2 . . . r,m

—1 0 0

0 —1 0

0 0 —1

(4) If

A – 14
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then the tank of the augmented matrix equals

tankfA,b) = ranktA) = r

In this case the linear system is consistent. It has a solution. A particular

solution is provided by

w, ot
ci

2 P2

St

t+l

r+2 0

(5) If • 0, then

rankfA•,b) rankfA) + I r+I

In this case the finhomogeneous) system is inconsistent. It has no solution.

(6) The general solution of a consistent inhomogeneous system is obtained as the

A – 15
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sum of the general solution of the homogeneous system and a particular solution

of the inhoniogeneous system.

(7) If in r the solution is unique if it exists.

(8) If in n r the solution always exists and is unique. A is an n by n matrix

of rank a. Such a matrix is called regular.

A – 16
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2. Linear operators.

2.1. Definitions.

A linear operator A is a napping between vector spaces V and W. Tt maps any xeV

uniquely onto a yGW. In symbols:

y = Afx)

Not every vector yeW must be the image of a vector xeV. Therefore one says that

A maps V into W. Should the images of all vectors x in V really cover the whole

space W, and should one wish to emphasize this fact, one says that A maps V

onto W.

The images of two different vectors x11x2e V may coincide in W. Thus the

pre—images” of a vector yeW need not be unique in V. An important subclass of

linear operators will have unique pre—images.

The fundamental property of linearity of the operator A is expressed by the

following equation:

ACZ1x1 ÷ 2x2) = Z1Afx1) ÷ Z2Afx2)

Thus a linear operator maps a linear combination of vectors onto the linear

combination of the individual image vectors in a way that the scalars are

preserved.

A – 17
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2.2. Examples of linear operators.

2.2.1. The linear equations

‘li tti + + 1mm

‘12 211 ÷ +

‘in = n11 +
+ nm’ni

define a linear operator mapping Rm into R. Thus we have obtained another

important interpretation of a linear system of equations.

2.2.2. Taking the derivative of a polynomial defines a linear operator mapping

the space of polynomials onto itself. The subspace of polynomials of degree n

is mapped into itself. The space of images is that one of polynomials having

degree n—1.

2.2.3. Interpolating a continuous function at n+l distinct locations

,
by a polynomial of degree n, defines a linear operator from the

space of continuous functions onto the n+1 dimensional space of polynomials of

degree n.

2.2.4. A linear operator mapping a vector space V into R, the set of real

numbers, is called a linear functional. The zero functional assigns zero to any

vector out of V. All other linear functionals map V onto R. Examples of linear

functionals follow.

A – 18
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2.2.5. A linear form

(x) f1i’1 + ÷

is a linear functional defined on Rm.

2.2.6. Evaluating a continuous function at a fixed location ‘ defines a linear

functional on the space of continuous functions.

2.3. Matrix representation of linear operators.

Let A be a linear operator mapping the rn-dimensional vector space V into the

n—dimensional space V. Choose a basis e11.
.
.,e in Vm and a basis f11. . .,f in

V. Represent

x Z

Y

The image Afe) of the basis vector e3 is a vector in V. Let its representation

in terms of the basis f1,. . . ,f be

t(e) c,1f1, jl,. .

A – 19
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2.4. Composition of mappings, matrix product.

Let

yM(x)

z My)

be two mappings. M maps V into V, and A maps V into Vi,. The composite mapping

N = AuM is defined as

z = N(x) AaM tx) = AfM(x))

Let

11 In

p1 pn

and

f3ti Im

n1 nm

be the matrix representation of A and M, respectively. We.are going to find the

matrix representation of N = AoM, denoted
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Substituting

into

-

=1

13k j

It follows that

V13
= kt 1kPkj

This leads to the definition of the matrix product

Vi 1

VP’ Vpm

kjj

one obtains

= 1k 1=1

I

3=1 kl ikkj) j

C AB
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The matrix product is associative, i.e.

A(BC) = (AB)C ABC

Associativity follows immediately from the associativity of mappings. It may

also be proved directly.

2.5. Inverse operator, inverse matrix.

Let A be a linear operator mapping V onto W. Let A=(yJ) be the matrix

representation of A. It follows that the linear system

= 1=1,.. .,n

has a solution for any choice of
‘,

i1,. . .,n. From the theory of linear

equations it follows that rankfA)n, and that the solution is necessarily

unique. Hence we obtain a mapping A1 mapping W back onto V. The mapping is

necessarily linear. Let A1 be its matrix representation. We call A1 the

inverse operator of A, and A1 the inverse matrix of A. It follows that

A1oA = I

A1A = I

Here I denotes in the first case the identity operator mapping V identically

onto itself: x = 1(x). In the second case I den&tes the matrix representation of

the identity operator. We have
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10.00

01.00

1=

0 0 .1

0 0 .0

The inverse operator of the inverse A is A again:

AoA I

AA1 I

The inverse matrix A1 may be calculated by the Gauss—Jordan procedure. The

procedure must be carried out for a general right hand side
‘,

i=1,.. .,n.

(Equivalently, one may apply Gauss—Jordan for n right hand sides represented by

the columns of the identity matrix I.) :.•

2.6. Linear functionals.

A linear operator from V into R was called a linear functional. Confer example

2.2.4. We write

ç )fx), xeV, çeR

to indicate that evaluated at the vector x gives the real number ç.
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Example: In two dimensions vectors may be represented by arrows (see section

1.2.9). Linear functionals may then be visualized as systems of equally spaced

parallel lines with an orientation. In order to evaluate the functional for a

vector, i.e. an arrow, one counts the line spacings between tail and top of the

vector. Loosely speaking, one counts how many lines are intersected by the

arrow. See fig. 2.1. The sign is taken in agreement with the orientation. The

idea generalizes to higher dimensions if systems of parallel hyperplanes are

taken instead of systems of lines.

= 6

My) =-2.5

After choosing a basis e1, j=l,. . . ,n, in VA, a representation of the functional

by a I by n matrix Z is obtained:

Fig. 2.1. Linear functionals represented by systems of lines

Il,
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If a vector x has coordinates then the functional ). evaluated at x gives the

number

Z(x) = j!,

Linear functionals form a vector space. Any linear combination of linear

functionals is a linear functional. The vector space of functionals defined on V

is called the dual vector space. It is frequently denoted V. A basis dual to

the basis e, j=l,. . .,n, in V is obtained by introducing the basis functionals

&, J1,...,fl, defined by

fe) =

Here is Kronecker’s symbol (equaling 1 if ij, and 0 if i.j). The basis

functional is represented by the lxn matrix

fO,.0,...,0,1,0,...0)

where the 1 appears at the j—position.

The coordinates of a functional Z with respect to the dual basis are precisely

the components of its matrix representation.

Example: Fig. 2.2 shows the two arrows representing the chosen basis vectors in
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the two—dimensional plane. The dual basis is represented by two systems of lines

also shown in the figure.

Fig. 2.2. Basis and dual basis.

2.7. Coordinates viewed as functionals.

After choosing a basis e, j=11. .,n, in V, any vector x is represented by its

coordinate n—tuple The mapping of x onto its i—th coordinate is

a linear functional, namely the basis functional &.,.

2.8. The dual operator.
linear

Let A be a operator from V into V. Let Z be a functional on V,. The equation

fx) tAfx))
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assigns a functional out of Y to any Z out of Y. A mapping A’ from V into

V is thus obtained. The napping is linear. A’ is called the dual operator of A

(see fig. 2.3.).

Fig. 2.3. Illustrating the definition of the dual operator.

Assume that bases in V, Vi.,, and corresponding dual bases in V, V are chosen.

Let A=f) be the matrix representation of A. We are going to find the matrix

representation of A’. We have

fx)

jfx) ZfAfx)) Zfy) = 5

On the other hand
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3. Matrix calculus.

3.1. Preliminaries.

It is time to formalise the computational rules for vectors and matrices. Matrix

calculus is the appropriate tool.

An nxm matrix A is a rectangular array of teal numbers cc, called its elements:

a11 a12 aim

a21 a22

a1 an2 ann

It will be convenient to identify vectots with their coordinate n—tuples. This

is legal in view of the isoinorphisni between any n—dimensional vector space V

and R, the space of n—tuples. It will further be convenient to identify

coordinate n—tuples with nxl matrices, calling them “column vectors”.

Alternatively, a coordinate n—tuple may be identified with a lxn matrix and

called “row—vector”.

As already pointed out in section 1.5, a matrix may be thought of being composed

of row vectors, or, alternatively, of column vectors.

3.2 Interpretation of a matrix—vector product.

The matrix product of an nxm matrix A and an nixi column vector gives as result
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an nxl co]unrn vector:

y Ax

In conventional notation this means

The following different interpretations can be given to this system of

equati ons.

f 1) A system of linear equations. In section 1.5 the quantities m were denoted

i1,.. .1n.

(2) The vector y is a linear combination of the columns of A. The scalar factors

are given by , j1,. ..,mn.

(3) The n linear functionals, represented by the tows of A, evaluated for t.he

vector x give the results ‘

(4) Representation of a linear operator A from RM into R. Confer section 2.3.

If natural bases are chosen in Rm and R, then the images in R of the basis

vectors in Rm are given by the columns of A:

Ate3)
it

a1 f. ,
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II
-‘z f

i1 7] 7

(5) If A is nxn, the spaces participating in the mapping may

is nxn, the mapping is one to one and called an autonorphism

(6) Change of basis in R, coordinate

R the old basis. Call the columns of

relation

transformation. Call

a regular nxn matrix

the natural basis of

A the new basis. The

XOld A Xnew

may then be viewed as the representation of one and the same vector by

coordinates with respect to the old and the new basis. (Note that xnew comprises

the scalar factors in the linear combination of the vector XOld in terms of the

) = +

= +

A

Fig. 3.1. Linear mapping of basis vectors: Afe)

be identified. If A

of R.

new basis.)

A – 32



2
c
Nci)

0

a)
5
-

0-4--)
C

)
a
)

C
’)

cc
iatJC
d

a
)

1
)

In

In00c
iU
)

•
C

d
C

’)•
U

)

C
d

cc
iU0-
aC
d

a)

4
-)

c
i0a)

0a)

cuC

U
)

..—
,

a
)

a
)

EC
d

—

U
)

.
a)

ai
-

•
1
•

4
-)

•
.-•

,
C

d
-C

d
X

c1—
Ju

a
)

-
,

a
)

II
-

0
C

d
-

)
-

-w
0

I
—

—
•r—

C
d

a
4--)

—
U

C
-w

a
)

I
—

a
)

.
,
-
,

In
0

-
I

a
)

C
d

L
-

0
C

d
—

a
)

a

0
•

>
<

II
C

%
I

U
)

•
E

—
C

’)
5

_
L

—
J,i

a
)

•
.-

a)
•

3
-)

a
)

H
•
‘
-

•
,•

-,

La
-
I
-
-

>
<

U

II

-wa

=
1—

I

a
)

•
1‘I
•
,-

,

II

-va

a
)

-wa

c
t-’J

ii

a
)

a)

•
-
,

C
d

.
,

-4-’

4
-)

-
I
-

4
-)
In
0C

d)

In

C
d

4
-
,

0UC0

A – 33



— A.3.S —

By the uniqueness of coordinates we deduce

x.f0 a.. fnew) i.e. (o1d) = A fnew)
j=t 73 3

(7) Further interpretations of y = Ax will follow after the definition of an

inner product in section 4.

3.3. Matrix algebra.

3.3.1. Scalar multiplication of a matrix. An nxm matrix A may be multiplied by a

scalar factor , yielding an nxm matrix B:

B =

The elements of B are given by

ij

3.3.2. Sum of two nxm matrices. The sum is again nxm:

C A+B

The elements of C are given by

hi = ji + ii
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Remark. It is seen that the set of nxm matrices forms a vector space. However

this viewpoint is not very important for our purposes.

3.3.3. Matrix product. It was already defined in section 2.4. Let A be pxn, B be

nxm, C be pxm. The equation

C = AR

means

= kt

For the interpretation of a matrix product as representation of a composite

mapping see section 2.4. Formally the matrix product arises if a set of linear

expressions is substituted into another:

y = Bx substituted into z = Ay gives z = AfBx) fAB)x

Important computational rules are

AfBC) = CAB)C = ABC . . .. the associative law

The associative law was already introduced in section 2.4. It was tacitly

applied in the abov& substitution rule. We further have the rule:

fA+E)C = AC ÷ BC . . . first distributive law

A(B+C) AR ÷ AC .. . second distributive law
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(AB) fZA)B A(ZB) = ZAB ABZ

(scalar factors may be “pushed through matrix products”.)

Remark: Note that the matrix product is generally not commutative. If CAB, the

product BA may not even be defined. If BA is defined, as for example in the case

of nxn matrices A,B, then BA is generally different from AB.

3.3.4. Transposition. Let A be nxm. The transpose AT of A was already introduced

in section 2.8 . It is an mxn matrix having elements

i1,. . .,m, jI,. ..,n.

The following computational rule applies:

fAB)T BT AT

This may either be verified directly. It may also be inferred from the fact that

AT represents the adjoint operator of that one represented by A: Let B represent

a mapping from U into V. Let A represent a mapping from V into W. Then AB

represents the composite mapping from U into W. Now, A’ represents the mapping

from W’ into V’ , BT represents that one from V’ into U’ . Here U’ ,V’ ,W’ are the

dual spaces. Confer section 2.8. It follows without calculation that the

composite mapping from W’ into U’ is represented by BTAT (confer fig. 3.3).
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AOM...A5

Fig. 3.3. Showing that (AaM)’ M’oA’, hence (AB)T BTAT

(The operators A, M are represented by A, B, respectively.)

3.3.5. Inverse matrices. The inverse of a matrix was already introduced in

section 2.5. If A is nxn and regular (i.e., rankfA)n), then the inverse matrix

A1 exists and fulfills

If

then

A1A = AA1

y Ax

x = Ay

=1

B’A’ = (AB)’

These equations can be given the following interpretations:
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(1) The solution of an nxn linear system Ax = y is x A1y if A is regular.

(2) If A represents a linear operator mapping x onto y Ax, then A1 represents

the inverse operator mapping y back onto x Ay.

(3) If X0j = A Xnew expresses old coordinates in terms of new ones during a

change of basis, then Xnew = Ax0iu expresses new coordinates in terms of old

ones.

The following computational rules apply

f I) (ABY1 ,

(provided that A,B are nxn and invertible.). The proof relies on the associative

1 aw:

fr1A)fA8) B1fAA)8 = B18 = I

(2) (ATY1 = (A1)T

The proof follows from transpoing AA1 = 1.
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4. Inner Products.

4.1. Definition.

Let V be a vector space. An inner product assigns a scalar number to any pair of

vectors a,b € V. This number is denoted (a,b). The following properties of an

inner product are postulated:

(a,b) = fb,a) symmetry

(Za,b) = ,fa,b) homogeneity

fa1+a21b) = fat,b) + fa21b) distributivity

fa,a) > 0 if a*0 positive definiteness

A vector space V equipped with an inner product is called an inner product

space. If V is infinite dimensional, one calls it a pre—Hilbert space.

4.2. Schwar:’s inequality.

It reads

fa,b)2 (a,a)fb,b)

Proof: For any scalars it follows from positive definiteness that

0 fZa÷b,La+b) = Z2fa,a) ÷ 2ta,b) ÷ t2(b,b)

Without loss of generality assume a*0. Put =1. Then

ff,) fa,a) + 2,fa,b) + fb,b) 0
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The parabola ffZ) must not cross the abscissa. The discriminant must be smaller

or equal to zero:

(a,b)2 - fa,a)(b,b) 0

This is Schwarz’s inequality.

4.3. Norms, distances.

For any vector a€V the number
t

Hall = ia,a)

is meaningfully defined because fa,a)0. The number hail is called the norm or

the length of the vector a.

Note that $chwarz’s inequality may be rewritten as

i(a,b)l hiallilbil

The following properties follow from those of the inner product:

hail 0, unless a0 in which case Hall = 0 . . . positivity

HZalI IZillalt . . . positive homogeneity

lla+bll hail + hibhi triangle inequality
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Proof of the triangle inequality:

fa+b,a+b) = ta,a) + 2fab) + tb,b)

i.e.

lIa+b112 = Nail2 ÷ 2(a,b) + ilbll2

By Schwarz’s inequality

lla+b112 Nail2 + 2 IlaltIlbfl ÷ 11b112

lIa+b112 (NaN + llbil)2

Taking the square root, the triangle inequality is obtained.

The norm allows to define a distance between two vectors:

dfa,b) = ila—bil

The following properties follow immediately from the properties of the norm,

dfa,b) > 0 if a*b, dfa,a) 0 .. . positivity

dfa,c) d(a,b) + dfb,c) . . . triangle inequality

The definition of a distance makes V a metric space.
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Example: In the two dimensional plane, norms and inner products may

by a system of concentric and equally spaced circles. See fig. 4.1.

of a vector is placed at the center, the circle passing through its

the norm

Fig.

be defined

If the tail

top implies

The inner product can be defined by

(a,b) = hail Obil cos

This is hiatt times the norm of the orthogonal projection of b onto a, or

likewise, hlbil times the norm of the orthogonal projection of a onto b. The four

properties of the inner product should be verified.

An alternative way to define an inner product in the plane is as follows. The

system of circles is changed to a system of ellipses by choosing an arbitrary

axis and by shrinking the vertical distances with respect to this axis by an

arbitrary factor. Norms and inner products are then defined as shown in fig.

4.1. flail 6, ilbtI 5, 60°, (a,b) ilail ilbil cos 15
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4.2. One can say that norms and inner products of vectors in fig. 4.2 are the

norms and inner products of fig. 4.1 applied to the pre—images under the affine

mapping that turns circles into ellipses.

Fig. 4.2. HaD = 6, flbII = 5, Ca,b) = Dali DbH cos !P’ = 15

4.4. Completeness, Hubert spaces.

A sequence of vectors a11a21.
. .,

is called a Cauchy sequence if for any positive

number there exists an index N(&) such that

dfam,an) for n,m Nfe)

A metric space is called complete if any Cauchy sequence possesses a limit

element in V: There must be an aeV such that far any positive & there exists

N(&) such that

dfa,a) & for nNf&)
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A complete inner product space is called a Hilbert space.

It is not difficult to show (from the completeness of R) that any finite

dimensional vector space is complete. It is thus a Hubert space, although this

term is mostly used in context with spaces of infinite dimension.

4.5. Representation of inner products by positive definite matrices.

Let V be an inner product space of finite dimension n. Choose a basis

e11.. .,e. Represent the two vectors x,y as

Expand

Denote

x1e1,

(x,y) f 1e1, ‘rie)

Yjj = fe,e)

yin-

then the nxn matrix

mn.
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is symmetric. We have

fx,y)

Identifying x,y with their coordinate n—tuples, interpreting the coordinate

n—tuples as nxl matrices (column vectors), we write

fx,y) xTy yx

We see: After choosing a basis, a given inner product is represented by a

symmetric matrix. Is the converse also true? Does any symmetric matrix define an

inner product? The answer is No! The matrix must fulfill one additional

requirement. It must be positive definite.

Definition: A symmetric matrix G is positive definite if for any vector x*O the

following inequality holds:

x1Gx > 0, if x*0

Equivalent definition: G is positive definite if for any numbers fl,.. .,, not

all of which are equal to zero, the inequality

> 0

holds.
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Positive definiteness is necessary for an inner product. For we must have

11x112 xTGx > 0

It is also sufficient because one may verify that all other properties of an

inner product listed in section 4.1 are fulfilled.

Positive definite matrices are regular. G exists. For a proof assume Gx0.

Multiply by xT: xTGx=o. This means 11x112 = 0. Hence lixil = 0. Thus x0. We have

shown that the homogeneous system Gx=0 has only the zero solution. This means

that G is regular.

4.6. Orthoqonality.

Iwo vectors x,y are called orthogonal if their inner product vanishes

(x,y) 0

Orthogonality depends on the choice of an inner product (but not on the choice

of a basis!). If the basis vectors e, j1,...,n, are orthogonal, we have an

orthogonal basis:

(e11e1)
=

> 0

(e11e) = 0 . .. if i*j

If in particular IIeII 1, i1,. . .,n, we call the basis orthonormal. We then
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have

fe,e)
=

The inner product is then represented by the identity matrix:

Example: If an orthonormal basis is chosen in the plane, then the inner product

of fig. 4.1, i.e.

fa,b) hail ilbhl cos

is represented by the unit matrix:

fa,b) = aT I b = aTb

Proof: Use polar coordinates, writing

a
ra COS !Pa

b
rb COS b1

ra rb flfl b]

Then

aTb ta r t COS SPa COS + SPa SPb =
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ta rb COS Hall ilbil cos fa,b)

Example: L

to fig. 4.

the inner

et the inner pro

2, the following

product given by

duct in the plane be given as in fig. 4.2. Referring

choices of basis vectors imply the representation of

the following matrices

Fr11 “121
e1, e2 . .

[V2t )‘ZZ]

e1, e2
Fl 0 1

= to V22]

VI2

> 1

4.7. Gram—Schmid orthogonalization.

The question still remains whether orthogonal bases exist and how to obtain

them. A complete answer is given by the Gram—Schmid orthogonalization procedure.

G
= 01

to Lj
=1

e2

e1

Fig. 4.3.
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Let V be a vector space. Let a11a21.
. .,

be a finite or infinite sequence of

vectors. Suppose that any finite subset of these vectors is linearly

independent. The orthogonalization procedure derives a sequence of orthonormal

vectors a1,a21.
. .,

such that

spanfa11a21.
.
.,a) = spanfä11á21.

.
.,ã11) for any m1,2,..

The method proceeds as follows.

Put

= IIa1IF a1

Suppose now that the vectors have already been found fulfilling

the above specified requirements. Represent the next vector as

÷ Z2a2 + ... + +

Require orthogonality of to the earlier obtained vectors ä1121..

i.e., requite

(k+I,k) 0, k1,...,j

This leads to the equations

= —fàk,aJ+l)J÷l
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Thus we obtain

tJ1tak,a]÷ta ÷ a÷1} ÷t

Abbreviate this as

=

Put

a]+[ = IIh31t1 hJ+1

4.8. Representation of linear functionals by vectors.

Let x be a fixed vector. Then the inner product

(x,y) = fy)

assigns a number to any vector y. All requirements of Z to be a linear

functional are fulfilled.

It is important that the converse is also true: At least in finite dimensional

spaces any linear functional Z can be represented by a vector x. fin Hubert

spaces of infinite dimension an additional property of functionals must be

required, namely continuity). We adhere to the finite dimensional case. We

identify a functional with the coordinate n—tuple (Z1,. . . ,) with respect to
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the dual basis. We know that the are also the elements of the representation

of Z by an nxl matrix. We interpret the coordinate n—tuple as a column vector,

writing

fy) = iLj,1j

On the other hand the inner product tx,y) is represented as

(x,y) = y
iJ

6

Fig. 4.4. Finding a vector x such that Z(y) = tx,y). Choose vectors

v with hull = HvhI = 1 as shown. Since fv) = 0, x must have the

direction of u. x = ‘u. Since (u) 2, we must have (x,u) = (u,u)

2, i.e. 2. This gives the vector x shown in the figure.

U,
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Hence the equation

= Gx or Z

must hold in order to represent the linear functional by the vector x. Because

C is regular, the representation is unique. We obtain

x = G1Z

The vector x is called the 11representer” of the linear functional 1.

4.9. Inner products of functionals, reproducing kernel.

Let Z, j be functionals. Define an inner product for functionals by their inner

product of the representers:

UdL) fx,y), xG., yG1

We obtain:

xy ZTKL

It is seen that the inner product fZ,) for functionals in V’ is represented by

the matrix

K =
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This matrix is called the reproducing kernel of the vector space V. The

reproducing property of K is described by the equation

(Kx) x

Mote precisely, if are the elements of K, then

n n
Z.. Z x.13 kt ]

This is clear from fK,x) KGx Ix x.

4.10. The adjoint operator.

If the linear operator A maps V into W, then the dual operator A’ maps

functionals ZeW’ back onto functionals eV’ . The defining equation of A’ was

given in section 2.9. In slightly different notation it reads:

fz) .fAfz)) A’(Z)fz), for all zeV

If A is represented by the nxm matrix A, then A’ is represented by the Iuxn

matrix AT. The corresponding proof given in section 2.9 becomes very simple if

matrix calculus is used. It suffices to rewrite the above equation as

Tz = ,T(Az) fA)Tz, for all zeV

If inner products are available in V and W, one can define the adjoint operator.
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This is done by switching from the functionals eV’ , ZeW’ to their reptesenters

xeV, yeW. According to section 4.8 this is done by means of the relations

fz) fx,z), for all zeV

and

Zfz) fy,z), for all zeW

The transition from Z to via

corresponds to a transition from the representet y of . to the representer x of

x A*(y)

The operator A* is linear because A’ is linear, and because the isometries

between V and V’ and between W and W’ are linear. A* is called the adjoint

operator.

The defining equation for A* is obtained by rewriting the defining equation of

A’ as

(x,z) fy,Afz)) =
fA*(y),z), for all zeV
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Finally we specify the matrix representation A of A*. Let the inner products in

V and W be represented by G, respectively. Recall that and Z are related

to their representers x and y by

Z-y

Substitute in

for IL and , to obtain

GVX = A’Gwy

or

x = GtATIwy

It is seen that the matrix representation of A* is

A* -—V W

Remark: The matrix representation A* of A* may also be derived in the following

way: Write the defining equation for A* as

fAfx),y) = tx,A*ty)) for all xeV, yeW
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Use the matrix representations A, A* to obtain

(Ax,y) = (x,A*y)

or

XTATGWY =
xJGyA*y,

showing once more that A* GATGw.
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5. Projectors.

5.1. Decomposition of a vector space into a direct sum of subspaces.

Let V be a vector space, and let VA, VB be subspaces which have only the zero

vector in common. We consider the vector space V of all vectors represented as

c a ÷ b, aeVA, b€VB

We now show that the above decomposition is unique. Suppose that

c a’ + b’, a’CVA, b’eV8

Subtracting we obtain

0 (a—a’) + (b—b’)

Now fa—a’)€VA, hence (b—b’) = —(a—a’) € VA. On the other hand, (b—b’) € V8. It

follows that (b—b’) is in VA as well as in V8. It must be the zero vector.

Consequently b=b’. Similarly aa’ is shown.

Because of the uniqueness of the decomposition, we obtain two mappings, one from

V onto VA, the other from V onto V8:

a TtAfc), b 118fc), ccV

It is easily seen that these mappings are linear. They are called the
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projections of V onto VA and V respectively.

Assume that Vc is of

follows necessarily

choosing a basis in

finite dimension n. Let

that the dimension of V8

VA and a basis in V8.

the dimension of VA be m. It

is n—in. This is easily proved by

Fig. 5.1. Illustrating the uniqueness of the decomposition

C a+b

5. 2. Orthocomplementary subs paces.

Let VA, V8 be subspaces of V. Assume that any vector in VA is orthogonal to any

vector in V8:

fa,b) 0, if aeVA and beV8

A vector belonging to VA as well as to V8 is orthogonal to itself. Its norm is

zero; it must be the zero vector. Hence VA and V8 have only the zero vector in

common. We may form the direct sum V as we did in the previous subsection. We

V3

b

VA
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call VA and V8 orthocomplernentary subspaces of V. We also say that V8 is the

orthoconiplenient of VA. Likewise, VA is the orthocornpleinent of V8. In symbols

— I.l. I — iIJ.

‘B — ‘A’ ‘A — ‘B

Note that the orthocomplement of the orthocoinpiement gives the original subspace

tyJ.L
— V

‘ A’ — A

The linear operators TtA and 118 introduced in the previous section are called

orthogonal projectors.

5.3. The theorem by Pythagoras.

Let a vector ccV be represented as the sum of its orthogonal projections onto

orthocomplementary subspaces VA and V8:

c a+b

Then

lid2 hall2 + iIbll2

Proof: lid2 = fc,c) (a+b,a÷b) fa,a) + 2ta,b) + fb,b) 11a112+11b112, because

(a,b)0.
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NcN2 llc2+ 11b112

52 32 + 42

Fig. 5.2. The theorem by Pythagoras.

Theorem. Consider the following extremum problem: Given ceV, find X€VA such

that

IIc—xII = minimum,

The solution is

x a

Proof: Decompose

C a + b, aCVA, bcV8

Rep res ent
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This is minimal for a=x, which was to be shown.

c—x (a—x) + b

It is seen that ta—x)eVA and beV3. The theorem by Pythagoras implies

IIc—x112 = Ifa—x112 + 11b112

Fig. 5.3. Projection as the solution of a minimum problem

5.4. Matrix representation of orthogonal projectors.

Assume VA, Vg and V

in V be represented

simplicity, identify

matrix A be a basis

a basis in V. Then

of dimension ni, n—m, n, respectively. Let an inner product

by the symmetric and positive definite matrix G. For

VA, V, V with Rm, R. Let the columns of the nxm

in VA. Likewise, let the columns of the nxfn—m) matrix B be

the columns of the matrix C A,B), whose columns are those of
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A followed by those of B, form a basis in V. Moreover, the orthogonality

requirement of VA and V8 implies:

ATB 0, BTGA 0

(Recall that inner products (a,b) are written aTGb; note that the elements of

ATGB are just all inner products of any basis vector in VA with any basis vector

in V8.)

Vectors aGVA and beV8 are uniquely represented as

a Ax, b = By

Here x and y are vectors of coordinates with respectto the bases in VA, V8. The

decomposition

c a + b, a6VA, beV8

is therefore equivalently written as

C Ax ÷ By

Form all inner products of c with basis vectors in A, i.e., multiply the above

equation by ATG. In view of ATB 0 we obtain
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fATA)x ATGc

This is a set of equations called “normal equations”. We prove that the mxm

normal equation matrix ATGA is symmetric and positive definite. Symmetry follows

from the symmetry of G and the transposition rule for matrix products:

fAA)T = ATGT(AT)T ATGA

In order to prove positive definiteness, we must show that for any nonzero x we

have xTATGAx > 0. We note that

xT(ATGA)x fAx)TG(Ax) fAx,Ax) IIAxII2 0

Assume now that OAxll20. Then llAxIIO. By the positivity of the norm we infer

Ax0. From the uniqueness of coordinates with respect to the basis in VA it

follows that x0. The proof of positive definiteness is complete.

The solution of the normal equations is uniquely obtained as

x fATGAY1ATGC

Inserting this into a = Ax, we get

a 1TA(C) = AtATGA)ATGc PAC
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Here we have introduced the matrix

=

It is the matrix representation of the operator UA projecting V onto VA.

Similarly

P8 BfBTGB)1BTG

represents 118, the projection operator from V onto V8. The equation

c a÷b

or

c = TTA(c) + U8fc)

shows that

+ ff8 = I,

the identity operator in V. This equation implies the matrix equation

+ P8 = I

which may also be proved algebraically as follows. Multiply the last equation

from behind by the matrix fA,B). Obtain (PA+Pg)(A,B) fA,8). From the
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regularity of (A,B) whose columns form a basis in V infer the desired relation

We further note the following relation

lAOUB = 0

The corresponding matrix relation is

AB 0

The proof is geometrically as easy as algebraically.

5.5. Projections of functionals.

Due to the isoinetry between a vector space V and its dual V’ (confer section

4.8), projections of functionals can be introduced in a very natural way. We

consider the dual spaces V, V, V. If represents the inner product in V

with respect to the chosen basis, then KG1 represents the inner product in Vé

with respect to the dual basis. Recall that any linear functional eVé

related to its representing vector x by ZGx, xKZ. If VA is spanned by the

columns of the matrix A, then V is spanned by the columns of A’GA. Likewise V

is spanned by B’GB. Vé is decomposed into orthocomplementary subspaces

The relation

AITKBI 0
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expresses the orthogonality of V, V in matrix form. The projectors 11, 1T onto

V, V are represented by

Z, Pz

with

AI(AITKAI)AJK

= BIfBITKBI)BITK

This is all very obvious because of the isometry. It is also obvious that the

representer XA of the projected functional A is the projection PAX of the

representer x of . However there is the following interesting characterization

of functionals ceV and eV in terms of the vector subspaces VA, V8:

eV is equivalent to (y) 0 for any yeV

eV is equivalent to 3fx) 0 for any XCVA

8

/

I Z

A.

1 (y) (x y)

7 / / // / / 7 / / (x,y)

Fig. 5.4. The projection of a functional.
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VA. Hence ix must be in
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if ix6VA, ix is represented by a vector aCVA, and ixfy)

ixfy) 0 for any yeV8. On the other hand, if a functional

and if ix(y) = fa,y) 0 for any yeV8, then a must be in

VA.

The projector of a functional ZA = is characterized in the following way

The proof follows again easily from (xA,y).

The projection operator

section 2.9.

UA is the dual of the projection operator UA. Cf.

(IIAL)(x) = (Atx))

For a proof one just inserts for x vectors either in VA or in V.

We also have the following

Theorem. If , is a linear functional in V,

solution of the following extrernum problem:

that

than the projection A P is the

Given L, find a functional such

= Z(y)

0

for Y€VA

for yeV8
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IIp.II minimum

subject to

p.(a) (a) for any a6VA

Proof: The relation p.ta)=Z(a) for any a€VA, is equivalent to (L—p.)(a) = 0 for

any aGVA. By out earlier characterization of V, this is equivalent to (—p.)eV.

This in turn is equivalent to U.—I.c)A=O, or PA=ZA. We see that any p. qualifying

for minimization is representable as p.=+Y, veV. By the theorem of Pythagoras

we have ltp.112 IIZAII + 11v112. Hence is the smallest.

Suppose that is a functional whose domain is VA. Its values for vectors not

in VA are unspecified. We call p. an extension of to V if p. is defined on all

of V and if p.fa) = p.(a) for any aeVA. The following theorem is rather obvious.

Theorem. The extension p. of having the smallest possible norm is given by

p.fa) p.(a) .. . for a8VA

p.fb) 0 for beV

Equi vaently

p.fx) p.tTTfx)), x€Vc

The minimal norm is given by
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III.LO 11IA’1

Of course, is the projection of onto V.

Remark: Referring to section 4.10 on the redefinition of the adjoint operator in

case of inner product spaces, note that A is a seif—adjoint operator:

GtPATG

The adjoint equals the original operator.
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6. Least squares adjustment.

6.1. Projecting the vector of observations.

It remains to change notation in order to conform with sacred traditions in

least squares adjustment. Let L be the n—dimensional vector space of

observations. A vector 2eL has coordinates

2=

Any coordinate corresponds to one individual measurement such as a direction, a

distance, an azimuth or a Doppler count. Of course, in an originally nonlinear

problem the observations are replaced by small increments with respect to

approximative quantities. Note that we deviate from the earlier rule to use

Greek letters for coordinates.

We introduce the subspace LA of adjusted observations. Corrections v must be

added to the observations in order to force the adjusted observations into LA

Ui-v c LA

Equl valently

Ui-v = Ax
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As before, the columns of the nxm matrix A are a basis of LA. The vector v of

corrections is a member of L. The size of any vector in L is measured by a norm

derived from an inner product. Let the inner product be represented by the

“weight matrix” P. The matrix P is symmetric and positive definite. It need not

be diagonal, although in most applications it is assumed to be so. We like to

have corrections as small as possible. Thus we arrive at

ill—all minimum, aeLA, i.e., aAx

The solution was already obtained in the previous section:

Form the normal equations

fATPA)x ATP1

to obtain

= Ax = A(ATPAY.IATP2
=

The corrections are given by

v —U
— A1 ‘A1

The requirement 2÷v € LA is equivalently replaced by 1+v orthogonal to LB, i.e.

BTPf2÷v) 0
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In conditioned adjustment it is customary to replace the columns of the matrix B

by the corresponding functionals. Confer section 4.8. Thus one introduces

B’ PB, B PB’

Inserting into the previous equation gives the condition equations

B’’f1÷v) 0

Minimizing v gives, as we know, the solution

V P82

v = _B(BTPBYLBTPD _p_IgI(BIIp_IBI)lBIT1

One introduces correlates k by

k = f8IIpl8Iy1gT1

This permits us to write

v = PB’k

The correlates are the solution of the normal equations of adjustment by

condition:
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(8ITP8I)k ÷ w 0

The vector w of discrepancies is given by

w = 81T1

6.2 Inhomogeneous form of least squares adjustment.

Frequently an adjustment problem is posed as follows.

Minimize 0v112 subject to

1÷v = a0 + Ax (variation of parameters)

or subject to

BT(D÷v) = b0 (conditions)

In the case of variation of parameters the requirement is

111—f a0+Ax)H2 minimum

If it is rewritten as

11(2—a0) — Ax112 minimum

we arrive at the earlier case with 2 replaced by 2—a0.
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The so]ution is obtained from the normal equations

(ATPA)x = ATP(1_a0)

v —(I—PA)f1—aO)

In case of the conditioned adjustment we introduce a particular solution a0 of

the inhomogeneous system B”a0 = b0. We then have

BIT((1a) ÷ v) 0

This reduces again to the earlier case if I is replaced by (1—a0). The solution

is

v —PB(l—aO) PB’k

with

k = fBITPBI)w

and

w BIT(1_a) = BT1
— b0

6.3. The fundamental rectangular triangle of least squares adjustment.

The triangle is formed by

hypothenuse c 2 — a0

1st short side a Ax TlAf1—aO)

2 short side b = -v TIB(D-aO) = (I-PA)fl-aO)
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The vector (2—a0) is orthocompleinentary decomposed into a=Ax and —v. The theorem

by Pythagoras shows:

112—a0112 = IIAxII2 + 11v112

or

11v112 ll1—a0112 — llAxII2

or

v’Pv f2_a0)TP(2_a0) — xTATPAx

Putting a=Ax, one also recognizes (a,a) = fa,2—a0÷v) (a,1—a0), because

fa,v) 0. Hence

v’Pv = f2_a0)TP( 2—a0) — (2_a0)TPAx

Furthermore (v,v) —fv,1—a0). Using v = PB’k, one gets

v’Pv _kTBITPPf1_a0) = kT(8tT2b0) —k’w

6.4. Least squares adjustment by projecting functionals.

Let L’ be the dual space of L, the space of observations. Any ZeL’ is a linear

form in the observables. Thus if the observations are angles, distances e.t.c.,

then Z may refer to a coordinate of a station, to an area, or to any other

quantity depending linearly on the observations. fNonlin.ear adjustment problems

have to be linearized, of course.) Recall that the coordinates
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of any vector are functionals too. Hence may just refer to any particular

coordinate L of il.

The size of , is measured by its norm I1ZII. We have

iill2 = ZTQZ

Here Q=P1, the matrix representation of the reproducing kernel of L.

The subspace LA is the space of adjusted observations. We want to replace by a

functional A such that A(a) coincides with Z(a) for any adjusted observation

aCLA, and such that 2, is as small as possible. The minimum problem

IIILH minimum

subject to

fa) fa) for any aCLA

was solved in section 5.5. The solution is the projection

If Z is identified with its coordinate column vector Z (with respect to the dual

basis), then

— ni

-
r

A – 77



— A.6.8 —

with

AIfAJQAIYIAITQ

Putting A’PA, we obtain

= PA(ATPA)_IATZ

Applying the adjusted functional toward the observation vector, we get

ZT1 = TAfAIpA)—I,AIp2 ,Tf2A)

The familiar rule is recovered. The adjusted linear functional applied to the

original observations is obtained by inserting the adjusted observations into

the original functional. This demonstrates the equivalence of the two adjustment

procedures.

Remark. The functional approach toward least squares adjustment has the

following advantages:

(1) It lends itself to a statistical interpretation. Confer part B.

(2) It generalizes to vectors of infinitely many observations. It may not be

possible to assign a finite norm to such a vector of observations. Hence least

squares adjustment of stochastic processes relies on the functional approach.
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7. Partitioned matrices.

7.1 Definitions

Consider a matrix of size tn1+ n2)xtm1÷ m2):

The matrix may

subniatrices A1

be partitioned as indicated by the

,
A12, A21, A22, one writes

dashed lines. Calling the

A11 A12

A21 A22

A

A12

A1 A2

1,1 1,nt 1,fn1+t 1,ni1+m2

n111 n11m1 n11m1÷1 ••

an1+11
...

n1+l,m1 1+11m1+1 ••

121’ nt+n2,mt n1÷n21m1+1 ... n1÷n21m÷m2

The concept of partitioning may be generalized in an obvious way:

Aim

m
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The submatrfces are sometimes called “blocks”. Also vectors may be partitioned

into subvectors.

X1

x
x2

7.2. Computational rules.

7.2.1. Scalar multiplication. Partitioned matrices nay be multiplied by a

scalar. Obviously all submatrices are multiplied by the scalar.

7.2.2. Addition. Partitioned matrices may be added. Provided that the dimensions

of corresponding submatrices coincide, one simply adds corresponding

submnatrices.

7.2.3. Transposition. The transpose of a partitioned matrix may be formed, e.g.

A AT

=

[Alt Aj
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7.2.4. Matrix multiplication. Partitioned matrices may be multiplied under

suitable circumstances. This is best explained by an example. Let

A A11 12
Eu 812 813 814

A- A21A22 B-
B21 B2 823 824

A31 A32

We say that A has p3 generalized rows and n2 generalized columns. The number

of generalized columns of A coincides with the number of generalized rows of B.

B has m:4 generalized columns. Let the matrix C be composed of pxm blocks:

C C12 C C14

C C1 22 C23 C2

C31 C32 C33 C34

Then the product

C = At

may be formed by

C kLA1J

provided that all matrix products AjkBkj are defined. This is the case if in any
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block multiplication AjkBkj the first factor has as many (ordinary) columns as

the second factor has (ordinary) tows.

7.3 Block diaqonality.

The nxn matrix A is called block—diagonal if A is represented as

A11 0
A=

0 A22

Here A11 is n1xn1 and A22is n2xn2 and n1+n2n. A11 and A22 are square matrices.

If the inverse matrices A, A exist, then

A 0
A1 =

0 A

This is readily proved by verifying

AI1AI 0 I 0
AA= =1

0 A22A 0 I
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7.4 Block—gauss—elimination.

Consider a ]inear system

Ax b

Let it be consistently partitioned as

A11 A12 x1

A21 A22 x2 b2

Let A11, A22 be square matrices
LV

I
A11 A12 x1 b1

A21 A22 x2 b2

According to the computational rules for partition we may write

A11x1 + A12x2 =

A21x1 + A22x2 = b2

This looks very similar

elimination procedure.

equation by A21AII and

to 2 equations in 2 unknowns. Let us apply the familiar

We assume that A exists. We premuitiply the first

subtract from the 2nd The result is
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+ A12x2

0 + (A22-A2iAIAi2)x2 b2
- A2iAibi

We asswne that we niay uniquely solve the second set of equations:

x2 fA22—A21AA12Y(b2—A21Ab1)

We substitute back into the first equation obtaining:

A11x1 b1
- Ai2(A22-A2iAiA12Y’fb2-A2tAibi)

x1 = [A ÷ AiAt2(Az2—A2iAAi2)A2iAi]bt

A1A (A A A1A ‘b
— 11 12 22 21 II 12’ 2

Abbrevi ating

f—1 ) — A1 ÷ AlA (—1) —1
— ii 1112A22 A21A11

AC—I) — A1A At—i)
11”t2’22

AC—I) — A(—I)A A1
t2I — M22 ‘21”1t

- CA A A1A22 — 22 21 11 12

we get

x1 = A1b1 + AUb2

- At1)b + ANbX2
— 21 1 22 2

or

x1 — AJ’ Ajt) b1

x2 —
AU A’ b2
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or

x = Ab

we have recovered the block—decomposition of the inverse!

7.5 Theoretical background of partitioned matrices.

Let V be a vector space of dimension n and let V1 and V2 be vector subspaces of

dimension n1, n2 with n n1 + n2. Assume that the zero vector is the only

vector common to V1 and V2. As explained in section 5.1, V is the direct sum of

V1 and V2. The subspaces V1 and V2 are not necessarily orthocomplementary.

Any vector x e V is uniquely decomposed as

xx1÷x, x1eV1, x2eV2

As pointed out in section 5.1, the two mappings x-x1 and x-.x2 are linear. We

write

x1 111(x)

x2 = 112fx)

The 2 are called projection operators. They are not necessarily orthogonal

projectors. Let Vm and V be vector spaces. Let

V = V + V V is the direct sum of V and V
h) In

V V + V V is the direct sum of V and V
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Let A be a linear operator Let

y = Mx)

Decompose

X = X1 ÷ X2, X1 € V X2 C Vrn

y “1 ÷ Y21 y1 € V, Y2 €

We have

y Atx)

Let 1T , 2 be x-x1, x-*x2

and R1 R2 be y-.y1, y-’y2

Then

y1 R1y R1oAtx) R1oA(U1fx)÷112(x))

i.e.

y1 A11fx1) + A12fx2)

similarly:

= A21fx1) + A22fx2)

A – 86



— A.7.9 —

Note that maps Ym. into V. . Choose bases as follows

Vm e1
..,

e

em+I ,. ..,

•.,

,.•.,

Let A be the matrix representation of A. Pattition

A11 A12

A21 A22

It is easily verified that are the representations of Thus it is seen

that the calculus of partitioned matrices relies on two assumptions

(1) Decomposition of the participating vector spaces into direct sums of

subspaces. (The decomposition needs not be orthogonal. In fact, an inner product

may not even be defined.)

(2) An appropriate choice of basis vectors: Any subspace must be spanned by a

subset of the basis vectors.
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8. Isometric mappings between inner product spaces.

8.1. Definitions.

Let V and W be vector spaces and let A be a linear operator from V into W:

y A(x), xeV, yeW

The mapping is called isometric if

IIAfxHI Oxil

It follows that no vector x*O can be mapped onto the zero vector. If A maps V

onto W, the mapping is invertible.

8.2. Preservation of inner products.

Isometric mappings preserve the inner product. For let

y1 Afx1), y2 A(x2)

Then 11y1—y21! 11x1—x211 implies

(y1—y21y1—y2) = tx1—x21x1—x2)

or

(y11y1) — 2ty,y2) + fy21y2) = (x11x1) — 2tx1x2) + fx21x2)

Due to isometry we have (y11y) (x11x1), fy21y2) fx21x2). Hence
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(y11y2) = (x11x2)

8.3 Matrix representation.

Let V and W be of dimension n. Choose bases in V and W. Let the positive

definite matrices Gv and w represent the inner products in V,W. Let the nxn

matrix A represent the operator A. Identify vectors with their coordinate

n-tuples. We write as usual

fx1,x2) = x1Tyx2, x11x2 c V

(y11y2) y1Ty2 y11y2 e W

The isometry requirement implies for any X1,X2 e V:

xiTGvx2 = (Ax1 )TG(AX) = XJATGwAX2

It follows that

A’GwA

8.4. Examples of isometric mappings.

8.4.1. The isometric mapping between any vector space V and its dual V’, the

space of linear functionals. We refer to section 2.6. The transformation matrix

equals Gv. For if the vector x is mapped onto the functional , we have =vx.

The matrix G1 equals K G1.
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8.4.2. Change of basis in V. Let e1

represent the inner product. Let ej

corresponding representation of the

the relation between old coordinate

x Ax

be the old basis in V, and G

,. ..,e be the new basis, and ‘ be the

inner product in V. As shown in section 3.2,

vectors x and new ones x1 is

(The j—th column of A contains the scalar factors expressing e in terms of e1,

1=1,..

Since the inner product is a property of V and not of any basis, it must be

preserved during transformation

xTGy (Axt)TG(Ayl) x’TfATGA)y’ xG’y’

It follows that

8.4.3. Isometry between a subspace and the space of its parameters. Let VA be an

ni—dimensional subspace of the n—dimensional space V. Let VA be spanned by the

linearly independent columns of the nxm matrix A. Let the matrix G represent the

inner product in V. VA has an inner product inherited from V:

(a11a2) = aJCa2
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Any vector a6VA is uniquely represented by its coordinates with respect to the

columns of A. These columns may be viewed as a basis of VA. Thus the system of

equations

a Ax

has a unique solution x. There is a one to one mapping between VA and the space

X of rn—dimensional coordinate vectors x. In order to preserve the inner product,

one must require

fx11x2) = fa1,a2), a1Ax1, a2Ax2

Letting G denote the matrix of the inner product in X, one finds

fx1,x2) = xJGx4 = (a11a2) = XJATGAX2

Thus

= A1GA

This looks the same as before1 however this time A is not invertible.

8.5. Canonical transformation of an adjustment problem.

We consider adjustment by variation of parameters:

Ax with weight matrix P
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We denote by L the space of observations and by LA that of the adjusted

observations. We choose an orthonormal basis in LA. Let the matrix A comprise

the new orthonormal vectors. Confer section 4.7. The columns of A are

expressible in terms of the columns of A:

A AC

We introduce new parameters

x Cy

The new adjustment problem is

D÷v=ACyAy

Consider the matrix B having orthonormal columns and spanning the

orthocomplement of VA. We have

ATPA = ,
Tp

, 0

Consider an isometric transformation to new observations 2’ given by

— ATP 2

— B’P
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The matrices

T

Ip

and

fA,B)

are inverse to each other. This is easily seen by multiplying these two

partitioned matrices and minding the orthogonality relations between and B.

Premultiply the adjustment problem by

AT
Tp

To obtain

= Iy

0

The weight matrix of the new observations 2’ is obtained as

P’ [AT1 P fA,B) = I
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The so]ution of the canonically transformed adjustment problem is obviously

D{ =y, v =0

= 0, v —2

Remark: Detiving the canonical form requires no less computational work than

solving the adjustment problem conventionally. The benefit is theoretical

insight.
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9. Partial reduction.

9.1 Partitioning the set of parameters.

Consider an adjustment problem by variation of parameters

D÷v = Ax, weight matrix P

Assume A being an nxm matrix. The rn—dimensional vector of parameters x is

partitioned into an m1—dimensional vector x1 and an m2—dirnensional vector x2:

xl
x=

x2

Of course, rn1+ rn2= m. Partition the columns of A accordingly

A = fA11A2)

The adjustment problem is then written as

xl
1÷v = (A11A2)

x2-

or

= A1x1 + A2x2

We are primarily interested in adjusted values of x2. The parameters x1 play an

auxiliarly role, as for example orientation unknowns.
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9.2 Partial reduction of the normal equations.

The normal equations are

fATPA)x = ATP2

or briefly

=

The partitioning of A induces a partitioning of G and r

AJPA1 AJPA2 x1
- AIP2

APA1 APA2 x2 - AP2

We abbreviate this as

C11 G12 Xy = r1

G21 G x2 r2

This may also be written

+ G12x2 =

+ C22X2 2

We may eliminate x1 from these equations in the same way as this was done
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in section 7.4. We obtain the partially reduced set of normal equations for x2:

(G22-G2iGtGi2)x2 = r2 - G21Gr1

This is abbreviated as

=

Our intention is to understand these equations geometrically.

9.3. Orthocomplementary decomposition of the space of adjusted observations and

its parameter space.

Let L denote the space of observations, and let LA be the space of adjusted

observations. LA is spanned by the columns of A. We now decompose LA into LAt

the space spanned by the columns of A1, and into L . L2 is the orthoconiplement

of LA1 in LA. It is spanned by the columns of a matrix A2 which is yet to be

determined. The following relations must hold

(A1 ,A2) span LA

A1TPA2 = 0

We use the isometry between LA and its parameter space X. Confer section 8.4.3.

The columns of are mapped onto the natural basis of X. The inner product in X

is represented by

= ATPA
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Any vector x in X is represented as

I 0 x1 I 0
x= = xI÷ x2

0 1 x2 0 I

i.e.

x J1x1 ÷ J2x2

X is the direct sum of two subspaces X1 and X2 spanned by the columns of J, ‘•

These subspaces are not orthogonal. We have

JjGJ = G1, i,j=l,2

We replace J2 by J2 orthogonal to J1. We proceed formally in a similar fashion

as in section 4.8 on Gram—Schmid orthogonalization. Jest confer the way, the

second vector 2 was derived there. We represent:

- J1C

where the matrix C is yet to be determined. Requiring I2 = 0 leads to

0 - 11C, i.e. C GiGi2

Thus
-

- 1 1 -If’ -J2 - U2 - -

- J1(JJGJ1)’JIJ2
= — PJ2 = (I—P1)J2
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We view the columns of (J11J2) as a new basis in X. A vector x is represented as

x = J1y1 ÷ J2y2

Inserting for J2 we get

x = (]1y1— P J2y2) + ]2y2

The vector in parentheses is in X1, (spanned by J1), the second vector on the

tight hand side is in X2 (spanned by J2). A comparision with the earlier

representation x = J1x1 + J2x2 shows:

J1x1 = J1y1 - J1GG12y2

12x2 J2y

Because the columns of J1 and J2 are linearly independent, we get

Xy Y - IIGI2Y2

X2

This expresses the old coordinates of the vector x in terms of the new ones.

The orthocomplernentary decomposition of X into spaces spanned by 2 induces

an orthocomplernentary decomposition of LA into spaces spanned by A1, 2• A

vector a c LA was previously represented as
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a A1x1 + A2x2

now it is represented by

a = A1YI ÷ A2y2

The new representation is obtained either bys.ibstituting for x1, x2

a A1fy1-12y2) + A2y2

A1y1 ÷ C A241GG12)y2

A1y1 + fA2—A1fAJPA1Y1AJPA2)y2

A1y1 ÷ (I—PA )A2y2

A1y1 + A2y2

or by noting that the dependence of A2 on A1, A2 must be the same as that of

on 1, 2

A2 A2
- A1GIIG12 A2

-
A1fAJPA1)’AJPA2

In any case, the desired matrix 2 is obtained as

A2

Our adjustment problem is thus transformed into
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A1y1 ÷ A2y2 A1y1 + A2x2

because Y2 = x2.

Verify that A PA2 G22 — = G22, AP2 = r2 — G211r1 = r2. Hence

the transformed normals ate found to be:

= r1

222 =

they decompose into two independent sets. The second one is identical to the

partially reduced normals for x2.

The partially reduced normals give x2. The question remains how to find the

residuals v without calculating y1 from the first set of the above equations.

9.4. The partially reduced observation equations.

If we did solve the complete set of transformed normals, we would get v from

= A1y1 + A2x2

Here

y1 = GIri = fAjPAi)AiP1

We see that
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- A1(AJPA1Y’AJPI + v A2x2

or

1
-

I ÷ v = A2x2

+ V

+ V =

The last set is called partially reduced observation equations. They involve the

pseudo observations

(I

It is important to note that the normals obtained from the partially reduced

observation equations are just the partially reduced normals for x2.

(APA2)x2 AP APU—PAN 4P2 i.e. G22x2

(Mind that A2 is orthogonal to A1

9.5. Alternative derivation of the partially reduced observation equations.

Consider the orthocomplementary decomposition of L into 3 subspaces LA1, L2,

Lg. The spaces LA L are already familiar. They are spanned by the columns of

the matrices A1, A2. The space Lg is the orthocomplement of the direct sum of

these spaces. It is also the orthocomplement of LA, A fA1,A2). The space L8 is

spanned by the columns of the matrix B. It holds that

AIPA2 = o, AJPB = o, APB = 0
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Let a new basis of L be given by the union of the columns of A1, B. We

transform the observations 1 to the new basis:

(‘I
11

2 = fA11A21B) 2

2’3

Because the subspaces LA, L2, L8 are orthogonal, it also holds that

A111 A11’ A212 P2, B23 PBI

Inserting the matrix representations of the projectors (e.g. A1

A1(AJPA1)AJP ) one finds the formula expressing 2’ in terms of 1:

(AIPA1Y’AIP

= (APA2Y1AP 2

2’ fBTPB)18Tp

The weight matrix of the new observations is the representation of P with

respect to the new basis. One finds

AJPPL1
__

o fG11 0 0 1
o A2PA2 0 = 0 G22 0

0 0 8Tpg 0 0 BTPB
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It is important to note the b]ockdiagonal structure. The observation equations

transform as:

21 + VI yl

+ v

+ v

= x2

v = —

The 3 subproblems

separate observati

diagonal structure

subproblems due to

yl =

x2

for 21, 2, 2 are completely independent. Any subproblen has

ons, corrections and unknowns. Essential is also the block

of the transformed weight matrix. There is no coupling of the

weights. One immediately obtains the solution

VI = 0

v = 0

Because the 3 subproblems are independent, the result for x2 is unaffected if we

put

21 = 0, y1 = 0

Hence the problem

O+v =0

+ v = x2

+ = 0
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yields correct results for x2 and vj, v, v. Transforming this problem backward

to the old basis, one obtains

A12 ÷ B2 ÷ v = A2x2

or

÷ PBI ÷ V A2x2

or

(I—P)2 + V

These are the partially reduced observation equations.

A – 107



1

A – 108



— A.lø.l —

10. Adjustment phased with respect to observations.

10.1 Formulation of the problem.

Consider an adjustment problem by variation of parameters.

+ v = Ax, weight matrix P

Decompose the vector 2 into two subvectors. Decompose v and A, accordingly

v1 A1
1= v= A=

22 V2 A2

Assume that the weight matrix P has the following special structure

P11 0

0 p22

There are no weights coupling the two groups of observations.

One may imagine that the two groups of observations refer to different time

periods. It could also be that they refer to different geographical regions with

partial overlap. In any case, one can consider the two separate adjustment

problems

+ v1 = A1x weight matrix P11

+ v2 A2x weight matrix P22
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and one can obtain their separate solutions Xf1), Xf2). The question is, how the

solution of the entire problem is related to these partial solutions.

One can also proceed differently. Suppose that the observations 2 are available

earlier. Then one calculates X(1) from the first set of the above relations.

This is phase 1 of the adjustment. Subsequently observations 2 become

available. One is then interested to calculate in the second phase the solution

x of the entire problem by using X(1), the solution of the previous phase in

combination with the observations L of the second phase. Of course, one can

consider more than two phases. However the essential features of phased

adjustment become transparent if only two phases are considered.

10.2 Addition of normal equations.

The normal equations of the two separate problems are

T — T(A1r11A1)x — A1P1111

—

— 2r2212

The normal equations of the entire problem are

A1
T

P11 0 1 FA1 A1
T o 1 ti1

A2 P22] [A2 A2 [0

This is evaluated as

(Al P11A1 ÷ A P22A2 )x (Al P1 + A P22)
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It is seen that the normals of the entire problem are obtained by adding the

normals of the two phases. The added normals can be solved to give the

solution x.

10.3 Updating the solution of the previous phase.

Consider the problem of the first phase

+ v1 A1x

Its solution is

X(1) fAJP11A1Y’AJP1121

Let L1 be the space of observations We consider the subspace LA1 of L1

spanned by the columns of A1 . We decompose L1 into orthoconiplenientary subspaces

LA1 and LBt . The space LB1 is spanned by columns of B1 . The residuals of phase

1 are

V(1) A1xf1)
-

As shown in section 6.1, V(1) may be represented as

V(1) —8fBiPiiBiY’BjP1i1

The second representation for V(1) will only be needed for the purpose of

mathematical proofs.
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Because LBt is the orthocomplernent of LA , we have

AIP11E1 = 0

Consider now a transformation of the observations of phase 1.

= fAJP11A1Y’AJP1111 Xf1)

i2 = (BjPiiBi)BiPii22

Note that the two matrices

(AJP11A1 Y1AIP11

T
and fA1,81)

fB1P11B1 )BiPii

are inverse to each other. (Multiply them to obtain the unit matrix I). Hence

the transformation is equivalent to

21t
= (A11B1)

212

The weight matrix of the transformed observations is given by

rAJPA, 0 1
P’ = fA11B1)TPfA11B1) =

11
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The transformed adjustment problem is

÷ vj1 x

i2 ÷

Equivalently

Xff) + v x, weight matrix AJP11A1

112 + Vj2 .O, weight matrix BJP11B1

The two problems are independent, because the weight matrix is block diagonal.

All the information on x available from phase us contained in the first set

Xf1) ÷ vh = x , weight matrix AIP11A1

We add the observation equations of the second phase, arriving at the problem

X(1) ÷ V = X

÷ v2A2x

with weight matrix

P11A1 0

o p22

A – 113



— A.tø.6 —

Forming the normals gives precisely the normals of the entire problem as they

were obtained earlier:

(AlP1 1A1 ÷ AP22A2)x fAJP1121 ÷ 4P2222)

(The calculation of the normals is easy and is omitted.) The solution x is

calculated. One calculates residuals of the second phase.

Vj1 = X — X(1)

= A2x— 12

The following relationship between residuals V(1), vj1 and the residuals

Vt

V2

of the original problem is interesting.

Theorem:

Tp vp1;v1 ÷ 4P22v2 =

+ vJAJP11A1v1 + 4P22v2

Equi valently
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v’Pv f1i - Ax(1))TP11(;
- AX(f)) +

+ fX-X(1))A1P11A1(X-Xfj)) +

+ - 2x)TP22f12 - A2x)

The first term on the right hand side is the weighted sum of residuals obtained

from phase I. The second and third term comprise the weighted sum of residuals

from phase 2. We thus obtain:

“The weighted sum of residuals of the combined phases is the sum of the weighted

sums of residuals of the individual phases.”

Proof: The theorem of Pythagoras applied to the entire problem and to the

individual phases gives the following three relations. (Confer section 6.3.)

vIPiivi ÷ 4P22v2 1JP1121 ÷ — XTAJP1IA1X
— x’AP22A2x

V1P11V1 = 11P111 - X(f)A1P11A1X(1)

VjJAJP11A1V{1 ÷ 4P22v2 x(1)A1P11A1Xf1) +

+ 1P2212 — xTAJP11A1x — XT4P22A2X

It is seen that the first relation is the sum of the second and third. This

proves the theorem.

10.4 Geometrical insight.

The space L of observations is represented as the direct sum of two

orthocotupletnentary subspaces L1, L2. Bases in L1 and L2 ate chosen and
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subsequently combined to a basis of L. This allows us to use the calculus of

partitioned matrices as out]ined in section 7.5. The matrix of the inner product

necessarily decomposes into blockdiagonal form.

p1 0

0 p2

because any vector in L1 is orthogonal to any vector in L2.

We consider the space LA, spanned by the columns of A1. It is a subspace of L1.

The subspace L1 is viewed as the direct sum of LA and its orthocomplement LB

in L1. A change of basis in L1 is performed such that the columns of A1 and B1

become basis vectors. This induces the transformation 11 The entire space

of observations L is now the direct sum of three orthocomplementary subspaces

LA1, L81, L2. The space of adjusted observations LA is only participating in

LA!, L2. Only the zero vector is common to LA and L3 . Hence the space L1 may

be ignored in the adjustment problem. This leads to the simplified setup of the

second phase.

X1 ÷ V11 = X

2 1-V2 =A2x

with weight matrix

AJPA1 0

0 P22
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10.5 Pre—elimination of group—internal unknowns.

Phased adjustment as outlined above is not very effective from the viewpoint of

computational efficiency. It becomes a powerful tool if it is combined with

partial reduction as presented in chapter 9. A great benefit arises if there are

sets of auxiliary unknowns, each one referring to only one group of

observations. If auxiliary unknowns y. are only present in group i, we call them

“group—internal” unknowns. It suffices to consider the setup

÷ v1 = H1h1 + A1x P 0
weight matrix P

+ v2 H2h2 + A2x 0 P22

Here h1 are auxiliary unknowns which are internal to group 1. The unknowns h2

are internal to group 2. H1 and H2 are the corresponding design matrices.

A remarkable simplification of the computation results if the group internal

unknowns are eliminated before the groups are combined.

As outlined in chapter 9., the elimination can be accomplished in two different

ways. If

+ v1 = Hh1 ÷ Ax

are the observation equations, one may either form the partially reduced

observation equations

+ v1 = Aix, A A1
— PHAI
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which lead to the partially reduced normals

AJP111x

or one may form the normals for a group

KJP1H1 HP1A h1 — HP

AJP11H AP1A x - AP2

and eliminate the auxiliary unknowns h The result will be the same set of

partially reduced normals, although the immediately derived expression looks

differently, namely as

fAJPA1 —

AIP2 —
iI,2

In any case, the partially reduced normals

jix

of all groups may be added to give the partia]ly reduced norma]s of the entire

system

(Gu+ G22)x +
r2
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A proof for the validity of the procedure of group—wise elimination of

group—internal unknowns can certainly be given in geometrical terms.

Occasionally, however, it is preferable to use calculus. We have to show that

the same result is obtained if partial reduction is done in the conventional

way, i.e. by ignoring the block decomposition of our system resulting from

decomposing 1 into It and 2 Write the observation equations as

+vHh÷Ax, weightmatrixP

whereby

H1 0 A1 P11 0
H ,A ,

P =

0 H2 A2 0 P22

In agreement with section 9.5 we obtain the partially reduced observation

equations as

+ v = Ax, weight matrix P

with

A = (I-PH)A

Forming H’ one recognizes

1H 0
H1 HtHiP11H1) HIP1j, i=1,2

0 H2
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4

Hence

-

1 - , with 2. fI—PH)21,
22 V

- A1
A - , with A1 ‘H )A

A2

These are precisely the quantities occurring in the partially reduced

observation equations obtained by considering the two groups separately.

This completes the proof for the case of group—wise partially reduced

observation equations. The proof for the validity of the group—wise partially

reduced normals is even simpler. It is omitted.

Remark: A geometric proof would start from the afore mentioned decomposition of

the vector space L into a direct sum of orthocornpleinentary subspaces L1 and L2.

In analogy to section 9.6 each subspace L, i1,2, is further decomposed into 3

orthocomplementary spaces LH. ,L1 and L8 . One considers LH as the direct sum of

LH and L11. The projector 11H onto LH is represented as

IT =11 ÷11H H H2

Because LH. cL1 i1,2, this may also be written

=
° 1TH 0

+ k ° a IT
1 1 L[ Z ‘2 L2
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Using this together with

= HHI 1i = =

one gets

° ‘11Hi ii

In agreement with section 7.5, one recognizes that the operators 11L° (1-1111)

map L into L, i1,2. They map L, j*i, onto zero. With respect to the basis of

L , those operators are represented by the matrices

with T1H. i1,2

encountered earlier.

10.6 Helmnert blocking.

The procedure of section 10.5 is the theoretical basis for Helmert blocking. As

an example take a network as depicted in the subsequent figure. Let 11 denote

observations taken at stations to the east of the dashed line. Let 22 denote the

observations taken at stations to the right. Let h1 comprise coordinate

increments of stations marked by single circles and situated to the east of the

dividing line. Such stations are called inner stations of the eastern block.

Include in h1 also orientation unknowns of observations out of 2i. Define h2
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accordingly. Finally let x denote coordinate increments of junction stations

marked by double circles. The procedure of section 10.5 gives rigorously

adjusted values of the junction station coordinat increments.
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11. Complementary extremum principles in least squares adjustment.

11.1 The basic geometric principle.

Let V be an n—dimensional vector space equipped with an inner product.

Let VA, V8 be orthocomplementary subspaces. The following theorem is a near

triviality.

Theorem: Let a e VA. The vector b e VB closest to a is the zero vector b0.

Proof: d(a,b)2 = Ha—bit2 = fa—b,a—b) (a,a)+fb,b), because fa,b) = 0, for

a e VA, b € V8. Thus dfa,b) hail2 ÷ 1ib112. Obviously this is minimal for b0.

11.2 Reformulation for linear manifolds.

We shift the problem slightly away from triviality by considering linear

manifolds instead of subspaces.

Definition: Let VA be a subspace and let a0 be any fixed vector in V. The linear

manifold MA comprises all vectors u which may be represented as

u a0 ÷ a, a e VA

Similarly, the linear manifold M8 is introduced. It comprises all vectors

representable as

v = b0 ÷ b, b € V8

b0 is again a fixed vector in V. It is seen that a linear manifold is generally

not a subspace. The zero vector may not be a member of MA or M8. However,

A – 123



- A.11.2—

difference vectors of the vectors in a linear manifold form a vector—subspace.

Next we show that the linear manifolds MA and MB have only one vector in common

if the participating subspaces are orthocomplementary. Let

w a0÷ a b0÷ b, a e VA, b € V8

It follows that

b0 — a0 a — b, a € VA, b €

The decomposition of b0— a0 into vectors of VA and V is unique. This shows

existence and uniqueness of w. It also shows that

a Ao a0)

b lT8ta0— b0)

Here A and It8 are the (orthogonal) projection operators onto the subspaces VA,

V8.

The translation

XI X ÷ W

carries the linear subspaces VA, V over into the manifolds MA, M8. Because

distances are translation—invariant, the theorem of section 11.1 is reformulated
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as follows.

Theorem: Let u e MA. Then the vector v e MB closest to u is the vector w,

representing the intersection of MA and M8.

The roles of MA and M8 may be interchanged. Thus it is seen that w is the

solution of two extremum problems:

f I) Given v € M, find 11 € MA such that

dfu,v)2 = Minimum

(II) Given u € MA, find v e Mg such that

dfu,v)2 Minimum

The two extremum problems have different admissible sets, namely MA and M. The

only vector common to both admissible sets solves both extremum problems.

Suppose that u’ is admissible for (I), but not necessarily optimal. Similarly

let v’ be admissible for (II). Then

dfv,w)2 dfv,u’)2

dfu,w)2 dfu,v’)2
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By the theorem by Pythagoras

d(u,v)2 = Uf u,w)2 + dfv,w)2

Using the second of the above inequalities, one finds

d(v,w)2 dfu,v)2 —

Combining with the first of the above inequalities one gets a lower and an upper

bound on the optimum value of (I):

d(u,v)2 — dtu,v’ )2 dfv,w)2 dtv,u’ )2

Similarly, an inclusion of the extremum of (II) is obtained. This is also

obvious if one notes that both extrema sum up to dfu,v)2.

Remark: In the literature, the second problem is frequently posed as follows:

(II’) Given u € MA and v e MB, find w € MB such that

dfu,v)2 — dfu,w)2 = Maximum

This redefinition causes the two optima to coincide. (“The energy equals the

comp]ementary energy”). Besides this, the second problem now searches for a

maximum. The solution is therefore a minimum for (I) and a maximum for (11*). It

is a saddle point. It is also more obvious now, why admissible vectors for (I)
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and (11*) give upper and lower bounds on the optimum. On the other hand, a

certain lack of symmetry in (I) and (11*) is noted. Therefore we prefer our

original setup.

Remark: In 2 dimensions the complementary extremum principles and their

solutions can be read off from a rectangular triangle

The points u, v form the end points of the hypotenuse. Problem (I) searches for

a point on the straight line containing the short side from 11 to w. The point

shall be nearest to v. Obviously the solution is w. Problem (II) is obtained by

symmetry.

Remark: If the subspace VA is spanned by the linearly independent columns of the

matrix A, and if VB is spanned similarly by the columns of B, then w is

represented as

MB

MA

w

w a0 + Ax b0 + By
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we get

Ax — By b0— a0

Premultiplying by ATI where G represents the inner product, we obtain the

normal equations• for x:

(ATGA)x = ATGtb0_ a0)

This is so, because the orthogonality of VA and Va implies

ATB 0

Similarly we obtain the normals for y

fBTSB)y BTfa_ b0)

11.3 Ad.justrnent by minimizing the norm of the residuals.

Let L be the vector space of observations 2. Let LA, La be the

orthocornplementary subspaces denoted VA, Va earlier. Let MA be the manifold

MA: (2 eLI 2 = a0÷ a, ae LA)

Here a0 is a fixed vector in L. MA is called the manifold of adjusted

observations. An observation vector in MA fulfills a number of geometrical or

physical constraints, such as triangle closures or equations of motion.
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The familiar problem of least squares adjustment searches for a vector 2 € MA of

adjusted observations. 2 is chosen in a way that the (squared) norm of the

residual vector

v1—1

is minimized. Thus we have problem

I) Given 1, find 2 c MA such that

df2,2)2 Minimum

In order to formulate the complementary problem, we need a manifold MB whose

participating subspace is L8, the orthocomplement of LA. The vector b0 must be

chosen in a way that 2 € M8.The simplest choice is

b0 = 1

One could deviate from this simplest choice and reformulate problem (I)

accordingly. However, we just take b01. We now have problem

(II) Given a0, find 1 € MB such that

dfa012)2 Minimum
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As we know, both problems have identical solutions. They are obtained as

2 a0 ÷ UAf2—aO)

1 1 + 1T(a0—2)

If A, B are the matrices whose columns space LA and L8, and if the inner product

in L is represented by the weight matrix P, then we may proceed as follows

2a0÷Ax

22+Bk

Normal equations

(ATPA)x ATP( 2—a0)

(BTPB)k BTPfa0_1)

The optima fulfill:

df2,a0)2 ÷ d(2,2)2 dfa012)2

Lower and upper bounds for the optimum of (I) follow from

d(a012)2 - dfa01I”)2 d(2,2)2 d(1,2’)2

provided that

1
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‘ e M, 1 € MB

It remains to characterize the linear manifold M8. It consists of all

observation vectors 2” which result in the same adjusted values 2 as 2 does. It

is even more instructive to characterize L8. It consists of all observation

vectors b e L whose adjustment results in the zero vector. (The vector of

residuals is then the negative of the observation vector.) Hence problem (II)

is formulated in words as follows:

f II): Find an observation vector of minimal norm which results in the same

adjusted vector 2 as the original vector 2 does.

11.4 Adjustment by minimizing variances.

We take some time and space to review fin different notation) concepts

introduced earlier (confer chapter 3.4). The observations 2 are now viewed as

random variables. L is the space of their realizations, also called the sample

space. The expectation EU) Z is restricted to the subrnanifold MA.

Eff) Z € MA

The covariance matrix of the observations I is

sf2) =

The positive definite matrix Q is known, the factor 2, called mean square unit

weight error, is either known or unknown.
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The inner product of L is represented by the weight matrix P. As pointed out in

section 8.4.1, there is an isornetry between L and its dual L’ The inner product

in L’ is represented by Q. 0 is also called the reproducing kernel of L (not of

L). It holds that

a =

The isoinetry is established by the representation of functionals as vectors.

Confer sections 4.8 and 4.9! Let f be a functional f € L’. 1ff is applied to a

vector 2 € L we write

ff2) fT2 H + ... ÷ f2

The representor r of f is a vector fulfilling

ff2) fr,1)

It follows that

ff2) fT2 = rTP2 fr,2)

holds, if and only if

f Pr

Equivalently
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r Of

If f is represented by r and g by s, then

ffg) fTQg
= fr,s) = rTPs

The isometry preserves the inner product.

Now let f be a functional out of L . Writing

T
Ff2) =ft2) + f = f’j + f = fj.+ f

0 0 0

this can also be viewed as a linear inhomogeneous function of the random

variables 2. As such F(2) has the variance

= 2(fT2) = fQfa2

Up to the factor 2 this equals 11f112, the squared norm of f.

Another linear inhornogeneous function (2) T2
÷ 3 is called an unbiased

estimator of f’ provided that

tf2)) = EFf 2))

Whatever the value of EfI) Z € MA may be. We obtain
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E(T2)
÷

E4[fT2)
+

TE)
÷ - fTEt2) + f0

÷ ? fT ÷ f0 for any € MA

Replacing by Z = a0+ a, a e LA, it follows that

Ta = fTa for any a e LA, and AfIao+ f’a0+ f0

or

ff4)Ta = 0 for any a € LA, and 3 tf_)Ta0+ f0

Once, an unbiased functional is established, the constant f0 is easily

determined from the last relation.

In practice Ff1) is related to a socalled “derived” quantity such as for example

a distance between two remote points in a network. Replacing Ff2) by f1) gives

a random function t2) having the same expectation as Ff2). One may exploit this

fact trying to replace Ff2) by an Ff2) having a variance as small as possible.

This optimal Ff2) will be called best unbiased estimator. Representing Ff2) as

fTf2) + f0, the decisive problem is to find f. This problem is the following

one

Given f e L’ , find f e L’ such that

ff—f)a 0 for any a € LA
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and

IIII2 Minimum

We further exploit

subspaces LA and L3

L. If 1-A and La are

by the columns of A’

A’ = PA

B’ PB

the isometry between L and L’ . The orthocomplementary

have their orthocomplementary counter—parts in L’ as

spanned by the columns of A and B, then L, L are spanned

and B’. Thereby

A GA’

B GB’

Functionals g fulfilling

(f—g)a = 0 for a € LA

are recognized to be precisely functionals representable as

gf+h h € B’

The proof is obtained by using representing vectors:

hfa) (b,a)

with b representing h. The inner product fb,a) is zero if and only if b e La,

i.e. h c L. We call the set of all functionals g fulfilling the above relation

IA’S
‘Is.
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M(geL’ I gf÷h,hcL}

M is the set of functionals leading to unbiased estimators ÷ for

Ft1) after choosing a suitable constant f0. Thus we arrive at the following

problem, which we call

(II’) Find f c M having minfrnal norm.

It is seen that f plays the role of the vector b0 in section 11.2, and that the

zero vector now plays the role of the earlier vector a0. Thus the complementary

problem is immediately obtained by taking .M = L.

(I’) Given f find f £ L such that

Itf—f112 Minimum

We see that

f = 1Tf

f = f + Uf—f) = fI—U)f

The projectors U, U are represented by. the matrices

1T = AICAITQA)IAI

B’ (B’ 108
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Recalling A’ PA, B’ PB, one verifies

•
= A(ATPA)AIP

P . . P B(BTPB)1B’P

This brings out the fact that 11 is the adjoint operator of hA:

(fl(fl ffUf)

Similarly h1 is the adjoint of PB. This closes the gap between the two ways to

perform an adjustment. An adjusted functional (a best linear unbiased estimator

i.e. a BLUE) applied to a vector 2 is the same as the original functional

applied to the adjusted vector of observations.

Remark: A useful application of the complementary problems I’ and II’ is the

a—priori specification of upper and lower bounds on the variance of the BLUE fT2

of a linear function fT2 of the observations. Any unbiased estimator T1 will

give an upper bound by II’:

2(I2) 2fT2)

On the other hand, by I’, any functional € LA, will give a lower bound

2ffT2) 2ffT9) 2(T1)
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If LA is spanned by the columns of A, then any functional in LAI is a linear

combination of the columns of PA.

Thus, one can frequently specify useful upper and lower bounds on y2(fT) before

an adjustment is actually carried out.
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12. Generalized inverses.

12.1. Range space and null space of a linear operator.

Let Vm and V be vector spaces of dimensions m and n respectively. We do not

impose any restrictions such as mn onto the dimensions. Let A be a linear

operator from V into V. After a choice of bases in Vm and V, the operator is

represented by an nxn matrix A.

The set of vectors xeVm which is mapped onto the zero vector forms a vector

subspace NfA) or briefly N of Vm. N is called null space of A.

N = N(A) = {xeVm I A(x) = O

The set of vectors yeV, such that y is the image of some vector xeV, is called

the range space RfA) or briefly R. R is a vector subspace of V:

R RfA) Y€V I y = ACx) for some xeVm)

A basis of N is obtained by identifying a maximal linearly independent set of

solutions x to the homogeneous system

Ax = 0

This can be accomplished by the Gauss—Jordan procedure fcf. section A.1.5).

A basis of R is given by a maximal number of linearly independent columns of A.
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We know from section A.2.5 that an inverse operator A1 exists if and only if

ni n, N 0, R

In this case the matrix A is nxn, its rank is n. The matrix is regular and

possesses an inverse A1, the matrix representation of A1.

The theory of generalized inverses attempts to extend the notion of an inverse

operator and an inverse matrix to situations where At and At no longer exist.

Of course, some requirements of an inverse operator (inverse matrix) have to be

relaxed.

12.2. The g—inverse.

A linear operator Ag is called a g—inverse (generalized inverse), if it maps any

yeR back onto a pre—image x of y:

if yeR and x Aty) then A(x) = y

This is equivalent to

AoA9(y) = y for yeR

Since any yeR may be represented as
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y A(x) for some xeVm

We also have

AoA9oAfx) = A(x) for any xeVm

It follows that

AoA9aA = A

is the necessary and sufficient requirement for A9 to be a generalized inverse

of A.

Let Ag be the matrix representation of A9. Note that maps V into Vm. Hence

Ag is an mxn matrix, while A was nxin. We call A9 a generalized inverse matrix of

A. It is characterized by

A A9 A = A

The matrix A9 is also characterized by the following property: If the system

Ax = y

is consistent (i.e. if y is in the span of the columns of A)? then
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x A9y

yields a solution of this system. There may be other solutions for the same

right hand side y.

The operator Ag and its matrix Ag are generally not unique. This is plausible

because the solution to a consistent system Ax y is generally not unique.

Let 9 be an operator from V into Vm whose range space Rfe1) lies in N = NfA).

Let e2 be an operator from V into Vm whose null space contains R R(A). If A9

is any particular generalized inverse, then

A9
+

÷

is also a generalized inverse. One readily verifies

AofA9+01 ÷e2)aA=A

because Aoe1 = 0 and 2A = 0

A general theorem on projectors. Let U be an operator from a vector space V

into itself. Necessary and sufficient for 1! to be a projector is the ralation

UcU = U

Remark. Let P be the matrix representation of U. Then the above relation
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presents itself as PP P.

Definition. An operator (matrix) fulfilling Tioll U (PP = P) is called

idempotent.

Proof of the theorem on projectors. Recall that a projector 11 induces a

decomposition of V into a direct sum of subspaces, the range space Rf1T) and the

null space N(11). Vectors in the range space are reproduced: 11(x) x if x 11(y)

for any y. Thus 11(11(y)) 11(y) for any y. This proves Tioll 11, i.e. necessity.

To prove sufficiency, assume that UoU 11 holds. Consider RfU) and Nfl!). If

xeRfII), then x = 11(y) for some y. From loll 11 we infer that 11(x) = Ifollfy) =

11(y) x. Thus vectors in RfU) are reproduced. Next we show that any vector x

can be represented as x x1 ÷ x2 with x1cRfU), x2€N(It). Just put x1 = 11(x)

and x2 x — 11(x). Then obviously x1eRfll) and x2eN(Tt). It remains to prove that

Rf1T) and Nfl!) have only the zero vector in common. If xcRfU) then x 11(x). If

at the same time xeNf1T), then 11(x) = 0, i.e. x = 0. This was to be shown.

Remark. We are not talking about orthogonal projectors. An inner product may not

even be defined in V.

Theorem. The operators represented by M, A9A, are projectors in

Ve, V respectively. It holds that

RCA), = NCA)
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Proof. Both operators are verified to be idenipotent. Hence they are projectors.

Any vector y in RfA) is represented as Afx) for some x. From A, i.e.

= Afx) for any x, it follows that A0A()
= y. Hence RfA) includes

The reverse inclusion is trivial. Thus R(A). We turn to

Obviously includes N(A). Suppose that there is a vector z in NfAA)

which is not in N(A). Then fAoA)(z) 0, but Afz) • 0. Put these equations into

matrix form

= 0, Az * 0

This tells us that x0 is a solution to the consistent system

AxAz, AzeRfA), Az.O

This is impossible. Hence NfA), as was to be shown.

Remark. If A1 is the ordinary inverse of A, then A is the ordinary inverse of

A1. This is generally not true in the case of A and A may not be a (A9)9.

This failure will be repaired in the next subsection by imposing further

restrictions on Ag.

12.3. Reflexive generalized inverse. In addition to

AoA9oA = A, i.e. AA9A A -•
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we also require

A9oAoA9 = A i.e. A9AA9 = A9

Then A is also a generalized inverse of A9. The roles of A and A can be

interchanged. We call such a generalized inverse ‘treflexive”. It will be denoted

by At. Its matrix representation is At. We repeat the above equations in the new

notation:

AOAtOA = A, i.e. AAtA A

ACOAOAC = At, i.e. ACAAt =

It fo]lows that the projectors AoAt and AtOA fulfill:

RfADAt) RCA), NCAoAt) NtAt)

RfAtOA) = RCAr), N(AtoA) = NCA)

From these equations and a dimension argument one can infer that A and A9 have

equal rank. One can also show that this requirement is sufficient for Ar to be a

reflexive inverse.

12.4. Generalized inverse with least squares property.

Assume an inner product in V. Let it be represented by the matrix G. We may

form the orthocomplement R of R. We consider a generalized inverse A9, i.e. we

requite
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AoA9oAA i.e.

In addition we postulate

NfAoA9) R, i.e. AA9y Ois equivalent to yeR.

The projector is thus requited to be an orthogonal projector. We denote

such a generalized inverse by A1, and its matrix by A1. The importance of A1 is

stressed in the following

Theorem. Consider the (generally) inconsistent system

Ax y

Let y be arbitrary. Then

x A9y

fulfills the least squares reqirernent

Mm Ily — Azil Ily — Axil
z e Vm

if and only if = A1.
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Proof. Given yeV, decompose it as

= + Y21 y1eR, y2eRL

Suppose that NfAoA9) = RL, then the projector U = onto R is an orthogonal

projector. Ca]culate

x A9fy)

then

z = Mx) 11(y)

is the orthogonal projection of y onto R. Thus z is the solution of the stated

extrenium problem.

Suppose now that

x

gives the least squares solution for any y. Then

Mx) = AoAfy)

must be the orthogonal projection of y onto R. Thus is the orthogonal
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projector onto R

A general theorem on projectors.

Let V be an inner product space. Necessary and sufficient for an operator U to

be an orthogonal projector is

biT = U and TT = U

Remark. 1T is the adjoint operator of IT in the sense of section A.4.1O, i.e. it

holds that fU(x),y) fx,U*(y)). If the inner product in V is represented by the

matrix G, and if U is represented by P, then the above conditions are restated as

PP=P

p p* IpTG

Proof. It

projector

that U =

equati on

was shown above that Itoh = U is necessary and sufficient for U to be a

onto RtU), and that V is spanned by RUt) and NfU). It suffices to show

U is equivalent to R(U)L = NUt). Assume that U = U. From the defining

for the adjoint operator [which is fTT(x),y) (x,1T*fy))], we get

fUfX),y) tx,Ufy))

This shows: If yeNfil) and xeR(U) then o = fx,O) (x,Ufy)) = (Ufx),y) fx,y) =

0. Thus NfIt) is included in RfT1)L.
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If x is arbitrary and yeRtU), then fx,1T(y)) = (U(x),y) 0. This shows that 11(y)

0. Hence RfU) is included in NUT). Thus 11 = U indeed implies RUT) NUT).

Now assume RUT) NUT), i.e. assume that 11 is an orthogonal projector. It was

shown in section A.5.6 that 11 = 11*. We give another proof as follows. From

*(It fx),y) tx,TT(y))

we deduce for jjy x:

(1) if yeRfil): fTJ*fx),y) = (x,Ufy)) fx,y) = (11(x) + fI—TDfx),y) (Ufx),y)

(2) if yeR(U): (U*(x),y) = fx,Ufy)) = fx,0) 0 f1I(x),y)

Thus (U*(x),y) (It(x),y) holds for all x and all y. Hence 11* 11.

Using the theorem we arrive at the following characterization of a least squares

inverse A1 represented by A1:

AoA1aAA orAA1AA

fA0AI)* AoA1 or G’fAA1)’G AA1

12.5. Ceneralized inverse with minimum norm property.

Suppose that V is equipped with an inner product. V does not necessarily have

an inner product. In addition to
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A

we require

= N

Because NfA9oA) = N, we thus require that is an orthogonal projector. We

call a g—inverse fulfilling these conditions a minimum norm inverse A. Its

matrix is denoted by A.

Theorem. Suppose that the system

Axy

is consistent. Otherwise let y be arbitrary. Then

x A9y

fulfills the minimum norm requirement

Mm llzII llxII

zeY
Azy

if and only if A9 Am
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Proof. Consider the consistent system

Az = y

Represent z as

z z1 + 22, z1eW, z2eN

All solutions to the system Az = y ate obtained by keeping z1 fixed (as a

particular solution to the homogeneous system) and by letting z2 vary over N (as

the general solution to the homogeneous system Az 0). Because 11z112 11z1112 +

11z2112, the minimal solution is obviously z = z1. It is obtained as z1 A9y if

and only if the image of A9y is in N for any yeR. Such y are represented as y

Au. Thus u must be in N for any u. Because is a projector whose null

space is N, A9A must be the projector onto N, i.e. it must be an orthogonal

projector.

The characterization of a minimum norm inverse is

AaAoA A or AAmA A

(Am0A)* = AoA or (AmA)* = AA with fAA)* GlfAMA)Tm

12.6. The minimum norm least squares inverse.

Assume that an inner product is specified in V as well as in V. Given an
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operator A from Vm into V,.,, we are searching for a giving a least squares

solution of minimal norm. We shall call such an inverse Aim. Translated into the

language of matrices, we start from a (generally) inconsistent system

Ax y

and we search for x fulfilling

lixil Mm lizil
zeZ

where Z is the set of least squares solutions defined by

Z {Z€VmI Ily — Azil Ily — AWl for any U€Vm}

We shall show that the solution to this problem is unique. Thus Aim and Aim will

be unique. We decompose V and V into direct sums:

= N + N

= R ÷ R

Decomposing y as

y t ÷ y2, y1eR, y2eR

the set Z of least squares solutions z is given by
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Azy1

[If Az = y1 + with 1eR, then we would have ily - Az112 11,71112 + lly112

Obviously this is minimal for
‘

0.1 We decompose

z z1 ÷ z2, z1eNL, z2cN

Because

= 11z1112 +

the minimal z is obviously z = z1. This concludes the proof. From the proof it

is clear that

(1) The operator A maps N onto R and N onto 0

(2) The operator Aim maps R back onto W and R onto 0.

If the operators A, A are restricted to the subspaces NL and R, then Aim is

the conventional inverse of A.

The operator Aim and its matrix Aim may be uniquely characterized by the

following equations:
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(1) AOAImOA A or AAImA A

(2) AJmOAaAJm = Aim or AImAAJm - Aim

(3) (AoA) = AQA1m or fAAlm)* AAim

(4) fA10A) A1m0A or fAFA)* AlmA

The necessity of these relations is easily proved: (1) holds for any A9, (3)

holds for a least squares inverse, (4) holds for a minimum norm inverse. (2) is

proved directly from the above geometric characterization of A and Aim. (Just

verify what Aim does to vectors in R and Ri).

Sufficiency of (1), (3), (4) is also clear from earlier sections. The

sufficiency of (2) is an interesting question. Note that a minimum norm inverse,

as considered in section 12.4, guarantees a minimum norm solution only for a

consistent system. However, in this section we want minimum norm solutions also

for inconsistent systems. Here condition (2) steps in, excluding inverses which

would not give minimum solutions to inconsistent systems. We do not further

elaborate but leave it with the hint that one must be concerned with the images

of vectors in RL under A9.

12.7. The pseudo inverse.

Assume that the inner products in Vm, V are represented by the identity matrix

(of appropriate dimensions in and n). The matrix representing the minimum norm

least squares inverse is then denoted by A. It is called the pseudo inverse of

A. Sometimes also the name “Moore—Penrose invers&’ is used. A is unique and

uniquely characterized by the following relations
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(1) AAA

(2) AAA = A

(3) fAA) AA

(4) fA+A)T = AA

Thus the pseudo inverse represents the minimum norm least squares inverse in

case of orthonotmal bases in V and V.
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13. Adjustment of rank deficient systems.

13.1. Formulation of the problem.

We introduce the following spaces

L . . . n—dimensional space of observations (sample space)

LA . .
. r—dimensional subspace of adjusted observations

X .. . rn—dimensional parameter space, rnr

There is a mapping A from X onto LA. It is represented by the nxm matrix A. The

mapping is not unique if rn>r. The rank of A is r.

The inner product in L is represented by the weight matrix P. The inner product

in X shall be represented by 6.

The adjustment problem is formulated as follows. Given a vector 2eL of

observations, find corrections veL and parameters xeX such that

D+vAx

v’Pv minimum

The solution for x is generally not unique. However, the corrections are

unique.

13.2. Solution via generalized inverses of A.

Let A1 be a least squares inverse of A. Then
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A1

is a solution of the adjustment problem. This is the statement of the theorem in

section 12.4.

Let Ah1 be the (unique) minimum norm least squares inverse of A, then

A1

is the solution of the least squares problem having minimal norm. This is the

result of section 12.6.

13.3. A minimum property of the covariance of the adjusted parameters = A12.

Using any least squares inverse A1’, the covariance of the adjusted parameters x

is

Zf) =

Let M = (m1) be an nxn matrix. The trace of M is defined as

n
tr(H) Z mjj

i’

The following facts about the trace of a matrix are needed in the subsequent

theorem:
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() if M is positive semidefinite, then trfM) 0. (This is clear, because a

positive semidefinite matrix has nonnegative diagonal elements. See section

A.4.5 for the definition of positive definite matrices.)

f) trfMN) = trfNM). The proof is an easy exercise. Note that M and N need not

be square matrices, only MN must be square.

Theorem. it holds that

tr(Alm P (AIm)T) {A1 P fAI)T)

Thus the trace of G Zf) is minimal if A1 is chosen as AIm.

Proof. Let x = Pty. Decompose x = x1 ÷ x2 with x1GNL and x2eN tNNfA) being

the null space of A). Then x1 Almy. We call B A1 — A1. The range RfB) is

in N. Thus BTG Aim 0 holds (recall that G represents the inner product in

X). Next observe that

trC A1 P (At)T)

tr{G [AIm + B] P1 [AIm ÷ B]T) =

tr{G Aim P (AIm)’) + tr{G Aim p-1 BT) ÷

tr{G B P-1 fAlm)T) ÷ tr{G B P B) =

tr{G Aim P1 (Alm)T) + tr{G B P1 BT)
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because tr{G A1 P. BT) = tr{BT C As” P) = 0, since BTG AItIl 0. Similarly

tr(C B P1 (Ah)T) = 0.

Now we focus attention on the trace

tr(G B P1 BT)

Decomposing C = RRT into Cholesky factors, we have

tr{C B P1 8T tr(R B P1 gIRT)

Now R B P1 BTRT = (RB) P1 (RB)T is positive semidefinite. (If M is positive

semidefinite, so is WMWT for any W. The proof of this just uses the definition

of positive semidefiniteness: For arbitrary x we have xT fWMwT) x (WTx)T M

(WTx) yTMy with y = WTx. However, YTMY > 0, because M is positive

semidefinite.) Thus tr(R B P1 BTRT) = tr{G B P1 gi) > 0 and the theorem is

proved.

13.4. Solution via singular normal equations.

We form the normal equations

(ATP A) = ATP1

They are singular if in>r. Any solution to these normals is a least squares

solution. This follows from the fact that the normals requite nothing else but
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the orthogonality of v A — 2 and the columns of A. The normal equations are

always consistent, because the projection of 1 onto the space spanned by the

columns of A must exist. tAn explicit consistency proof is given in section

13.6.) Thus, if (Tp) is any generalized inverse of ATPA, then

= (AtPA) ATP2 = A12

It follows that

A1 (Tp)g ATP

This equation means that if (Tp)g runs through all generalized inverses of

ATPA then, in any case, a least squares inverse A1 is obtained. Tf (ATPA)m is

any minimum norm inverse, then

(ATPA)m ATP2

must be the least squares solution having minimal norm. Thus

Aim = fATPA)m ATP

We find for = Alml:

Zf) = fATPA)m Tpplp (ATPA)m 2 =

= fATPA)m tATPA) (ATPA)m 2
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If (ATpA)m is chosen as fATpA)im then, due to the reflexivity of tATPA)tm, we

have

fAPA) 2

This, by the way, shows

fATPA)lm = (ATpA)m (ATPA) fATPA)m

More important is the minimum trace property derived in section 13.3:

f) is minimal if tATPA)m is chosen as tATPA)h

13.5. Calculation of the 2m—inverse Aim.

There are many ways to calculate the unique inverse AIm. We consider two

procedures. The first one is recommended if rankfA) is small compared to the

size of the nxm matrix A, more precisely if

rankf A) << rnin(n,rn)

The second procedure works well for matrices which are nearly square and whose

rank is nearly equal to the size, more precisely

rankfA) in n
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decomposi ti on

A = BCT
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where B I.nxr and C.. .rxm

Atm = GC (CTGCY

are both of tank in.

(Tpgyl BTP

Then

The proof follows by verifying the four conditions for Aim given in section

12.6. (Recall that G represents the inner product in the domain space of A.)

Remark. A rank factorization for A may be deduced from the last stage of the

Gauss—Jordan procedure (exercise).

Method (2). Consider matrices 5, N of size n x fn—r) and in x fni—r), such that S

spans R(A) and N spans N(A):

ATPS = 0

AN =0

Both S and N have the maximal number of linearly independent columns fulfilling

Consider a rank factorization of A, i.e. a

the two homogeneous systems above.
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Consider the square matrix of size fn+tn—r) x fn+m—r)

A 5

TNG 0

We show that this matrix is regular by showing that Hz = 0 implies z = 0.

Decompose z as

x
z=

y

Then Hz = 0 means

Ax + Sy = 0

NTGx =0

The spaces spanned by the columns of A and S are orthocomplenientary. Hence

Ax = 0 and Sy = 0 must hold. Since S has linearly independent columns, we infer

y = 0. We are left with

Ax 0

N’Gx = 0

Such a vector x must be in NfA) and, at the same time, it must be orthogonal to

N(A) which is spanned by the columns of N. Thus x = 0 and H is indeed regular.

We form the inverse of H, and we denote it as
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0 K
KL

rLP H

Our aim is to show that 0 Aim. As a first step we show that M 0. From

HH1 = I we deduce

AK + SM = 0

In the regularity proof for H we have seen that these equations imply H = 0.

Thus

0 K
H1

= rLP 0

We now write out the equations for HH1 i in full:

AQ+SLTP I (a)

AK =0 fb)

NTGO 0 fc)

NTGK I (U)

QA + KNTG I (a’)

OS =0 fb’)

LTPA 0 (c’)

LTPS = I (U’)

Post—multiplying (a) by A and minding tc’) we find the first condition of
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section 12.6 for a minimum norm least square inverse ti

AQA=A Cl)

Post—multiplying (a’) by ti and minding (c) we get

QAQ=Q (2)

We see that 0 is a reflexive inverse of A. Thus

rankfti) = rankfA) = r

We are done if we can show that the projectors AQ and QA are orthogonal

projectors. This is equivalent to conditions (3) and (4) for Aim as given in

section 12.6:

fAQ)* = Ati (3)

fQA)* QA (4)

What we need to show is that the null space ef AQ is S and that the range space

of QA is NL. The first assertion may be deduced from (b’), the second one from

fc). In both cases it is necessary to observe that the rank of AQ and QA is r.

This implies that the null space of AQ cannot be larger than the space spanned

by 5, and that the range space of QA cannot be larger than the orthocomplement

of N. Thus we have proved that the submatrix 0 of H1 is indeed identical to As”
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Remark. From A being the Qim_inverse of Q, and from reasons of symmetry, we may

deduce that the submatrices K and L of H1 span RfQ)’ and NfQ). This also

follows algebraically from R(Q) = NfA) together with (b), and from N(Q) R(A)

together with (c’). Thus RtA) NfQ) is spanned by S as well as by L, and NfA)

R(Q) is spanned by N as well as by K. Confer the geometric characterization

of Aim given in section 12.6.

13.6. Application to free network adjustment.

We i7]ustrate the principle by assuming, as a special example, a network in the

plane involving distance measurements. There may also be a number of measured

angles or unoriented directions. However, no azimuth measurements shall be

available. Also measurements of absolute positions shall be absent. The

coordinates of the network points are denoted by x1, i1,...,n. As usual they

are represented as

Xt0 + Ax, y = 0)
+ Ay, 1=1,...

whereby denote known approximate values and Ax1, Ay denote small

unknown increments. We introduce the vector Az by AzT (Ax1, Ay1, Ax2, Ay2, ..

• .Ax, Ay)T. We do not assign fixed coordinates to any of the network points,

nor do we fix any of the azimuths within the network. As a result the

observation equations
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i÷vAz

are singular, i.e. the linear system

A z = 0

has nonzero solutions. If we form the normal equations

(ATPA) Az ATP j

then also these equations are singular. The system

(ATPA) Az = 0

has nonzero solutions. It is not too difficult to show that the solutions for

A Az = 0 and (ATPA) Az = 0 coincide, i.e. that the null space of A equals the

null space of ATPA. (If A Az = 0 then trivially ATPA Az = 0. If A Az • 0

then (A Az)TP(A Az) > 0, since P is positive definite. It follows that

AZT fATPA) Az > 0, implying (ATPA) Az • 0. Q.e.d.)

On the other hand, the normal equations are consistent, i.e. a solution Az

fulfilling CATPA) Az ATPM exists for any choice of AP. For a proof start

from A Az = A1 ÷ v, decompose M into A21 ÷ A22 with M1 € RfA) and Al2 €

RfA). Choose v
=

—M2. Then A Az M is consistent; so is (ATPA) Az =

(ATP) Al1 = ATP .
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The proof just given demonstrates that any solution to the normal equations

gives a least squares solution to the generally inconsistent observation

equati ons

A Az

However, the solution to the normal equations is not unique. All kinds of

solutions are obtained if we write

Az = (Tp)g ATP

where fTp)q is any generalized inverse of the normal equation matrix ATPA.

The various solutions Az obtained in this way differ by solutions Az to the

homogeneous system

(ATPA) Az = 0

or also

A Az 0

These solutions are easy to specify from geometrical considerations. Since
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A Az

are the changes of the observables 2 if the coordinates are changed by Az, we

must look for such coordinate changes which leave the observables unchanged.

Such coordinate changes are implied by a translation and a rotation of the whole

set of points.

If the whole set of points is translated by Ac, Ac and rotated by a small

angle Ac, then the coordinate changes are given by

1 0 —y1 Ac

o 1 x1 Ac

1 0 —y2 Ac
0 1 x2

1 0 —y

0 1 x

= N At, say

It follows that

= A N At 0, i.e. AN = 0
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The three columns of N span the null space of the matrix A. As we know the null

space of A coincides with that one of ATPA

We assume an inner product in the parameter space implied by the unit matrix:

G I. Then the 2m—inverse of ATPA reduces to the pseudo inverse fATPAY.

Applying the theorem of section 13.5, we get this pseudo inverse by taking the

appropriate submatrix of

[ATPA Ni —L
— t(ATPA)+

LN’ 0]
— C K1 0

In this case

(ATPA)+ .2

has minimal trace among all covariance matrices () resulting from all choices

of least squares solutions to the rank deficient network adjustment problem.
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B. THE STOCHASTIC APPROACH TOWARD LEAST SQUARES

ADJUSIfr1ENI

I. Probabilities.

1.1 Relative frequencies.

Imagine a box filled with N identically shaped cards. Each of the individual

cards carries one out of th letters A,B,C. Suppose that the corresponding

absolute frequencies are NA, N8, Nc. Of course

NA + N8 ÷ Nc N

We also introduce the relative frequencies

NA N8 Nc
—

N N N

It follows that

+ fB ÷

Suppose that the contents of the box are thoroughly mixed and that one card is

drawn at random. We call this experiment an elementary event.

An event is defined as a set of elementary events. All events related to the

present experiment are quickly listed as follows:
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the empty set . . . the impossible event

A the writing on the drawn card shows the letter A

B similar

C similar

AB the letter A or the letter B is written on the card

AC similar

BC similar

Q ABC any letter is written on the card

the certain event

We do not hesitate to assign probabilities to these events as follows

pf) 0

pCA) p(B) =
ptC) =

pfAB) =
÷ 1’B’ pfAC) =

÷ c1 pfBC) = +

p(Q) = I

There are alternative ways to identify an event. The symbol A denotes the event

“Not A”, i.e. the letter A does not appear on the drawn card. Obviously A = BC.

Consequently p(A) = pfBC) =
=
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1.2. Probability space.

Let Q be a set of elements. The elements are called elementary events. Let be

a collection of subsets of Q. is a set of sets. The subsets of Q which belong

to I are called events. Not all possible subsets of Q may be in I. We require

the following properties of I.

(1) Q €

(2) is c

respect to

losed with respect to complementation (if A € I then A e I), and with

the formation of countable unions (if A1, A2, . . . c I, then

A;A2.1 ... € I)

that 0 e I. CQ is in I, hence 0=Q must be in I). Furthermore, if

is a countable sequence of events, flAY = A1A2 . . . must be in I.

because

A collection of

of subsets (even

subsets having the indicated properties is called

ts). Frequently I is also called a Borel field of

a sigma—field

sets.

Let p be a funct

any A € I. This

event A. (There

domain I is not

lonal defined on the subset

number is denoted ptA). It

is no point asking whether

necessarily a vector space!)

s in I. Thus p assigns a number to

is called the probability of the

the functional p is linear. The

It follows

A1, A2,...

This holds

fl A
1=1 1

= ti A.
i1 1
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We require the following properties of the functional p.

(1)

(2)

o ptA) 1

pfQ) I

(3) Let A1,

Then

i.e.

A2... be a sequence of mutually nonintersecting events, i.e.

0, if i • j.

pfA1A2. ..) p(A1) ÷ ptA2) +

p(UA) = if AA 0 for

of a box.

are defined in section I.L

i*j

Shooting against a target butt fixed to a wall.

are Borel sets of points in the plane. Borel sets in the plane are

d as follows. Suppose that a Cartesian coordinate system is chosen in the

The Borel field of sets in the plane is then defined as the smallest

containing all rectangles of the form

axb

cyd

1.3. Examples.

1.3.1. Drawing cards out

Events and probabilities

1.3.2.

Events

define

plane.

field
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It can be shown that most two dimensional sets which “can be imagined” ate in .

It is an amusing and nontrivial task to show that for example the set of all

points x, y fulfilling ax + by < c is in . The interior of a region bounded by

a nonintersecting smooth curve is also a Borel set. Consider now a function

f(x,y), calleda probability density function, having the following properties

ffx,y) 0

: :XY) dxdy = 1

The density assigns a probability to any rectangle axb, cyd by means of

paxb, cqd) bdf(xiy) dxdy

The properties of Borel sets and probabilities propagate the functional pfA)

from rectangles to any Borel set in the plane.

1.4. Calculus of probabilities.

We restrict ourselves to the following simple rules. Some of them have been

anticipated in section 1.1.

p(A) = 1 - ptA), A = Q - A

p(A’B) p(A) + p(B) - pfAB)

4.cB implies p(A) pfB)

The calculus of probabilities is modelled after the calculus of relative

frequenci es.
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2. Random variables.

2.1. One dimensional random variables.

Let Q,
, p be the 3 ingredients of a probability space. Let X be a function

mapping into the real line R. X is called rneasureable, if for any real x the

set

€ Q I Xfi) x)

is a member of .

Remark: The notation t) would be more appropriate, because f) is a real

number. However, we use the conventional notation Xfw).

To the mathematician a random variable is notMng but a measureable function. To

the practician any number resulting from a random experiment is a random

variable. Random variables quantify the outcome of an experiment. Instead of

results like ‘‘A’’ , “B”, ‘‘C’’ , “head’’ , ‘‘tai 1”, “male’’, “female’’, “wi n’ , ‘‘loss’’

“wet”, “dry”, “low”, “medium”, “big” etc. we get numbers. Any number resulting

from a geodetic measurement will be considered as a random variable.

Since the above set (r € I Xfr1i) x) is in Z, a probability may be assigned to

it. We introduce the distribution function

F(x) p e Q X() x)

For the sake of brevity we write this as
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F(x) p(X x)

The following properties of Ffx) follow V

OFfx)I

Ffx1) Ftx2) . . if x1 x2 fnonotonicity)

Jim Ftx) 0
x-.-.

Jim Ftx) I

The distribution function makes it easy to specify probabilities for events

aXb

paXb}F(b)-Ffa)
V

Tt follows that probabilities can be defined for any event of the form

e A)

where A is a one—dimensional Borel set.

2.2. Probability density function.

Assume that Ffx) is differentiable. Then

f(x) F’fx)
x

F(x) = I f(y)dy
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f(x) is called the probability density function of X. It follows that

pa X b)

The following properties hold

f(x) 0

I f(x) dx 1

2.3. n—dimensional random variables.

Let X11 X21. . ., X be n one—dimensional random variables. Any X1 maps Q into the

real line. We may introduce the n—dimensional random variable or random vector

xl

x

xn

It is a mapping (function) from Q into R. Because any X1 is measureable, any

set of the form

€ Q I X1fu) x11...,X(w) x)

is an element of . We may introduce the joint distribution function of

X11.. .,X by defining

F(x11. .. ,x) pui e Q I X1fi) x11. x
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.,x11. ..,x) =
— .,x)

For example, in case of n2 we have

p{a1 x1 b1, a2 x2

F(b11b2) — F(a1,b2) — Ffb11a2) + Fta11a2)

The mechanism of s—fields and Borel sets propagates the assignment of

probabilities to any set of the form

6 A)

where A is a Bocel set in R. (Borel sets in R are the smallest s—field

including all rectangular boxes with faces parallel to the coordinate planes. It

turns out that the choice of a coordinate system does not affect the field of

Borel sets.)

If F(x11...,x) is differentiable, we may introduce the density function

f(x11. .. ,x) by

ffx1,. . . ,x) —. . . Ffx11. . . ,x)
ax1 ax

It follows that

F(x11. ..,x) IXL. ?flf(y. ..,y) dy1...dy
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The probability

pa X1 b1, i=1,.. .,n)

is given by the integral

b1 b
I ffCx x ) dx ...dx
a1 a 1’ ‘ n 1 n

Moreover, we have for any Borel set

pX e A) = II...? f(x1 ,... ,x) dx1.. .dx

(The integral is always defined in the sense of Lebesgue. In most cases it is

identical to the familiar Riemann—integral.)

2.4. Functions of random variables.

Let tx1,. ..,xm) be a vector valued function mapping Rm into R.

ytpfx)

is a shorthand notation for

y1

Y2 = fx1,.. .,x)

y tx1, ,x)
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The function is called rneasureable, provided that the sets :.

e I p1(x) y11. ,(x) yj

are Rorel sets in Rm for any choice of

If X is an rn—dimensional random variable, then
:.

Y 9(X)

is an n—dimensional random variable which is the image of X under the mapping p.

If Ffx11. . . ,x) is the distribution function of X, then the distribution

function (y11. . ,y) of Y may in principle be deduced from

Gfy11. ,y) px e R I 91fx) y11. . .,9(x)

The probability of the Borel set on the tight hand side may be deduced from

F(x11. .

Remark: If nrn and if the mapping y = 9(x) is one to one and differentiable, and

If X has a probability density f(x11. ..,x), then also Y hasa probability

density gfy11...,y) which is given by

g(y1,. ,y) ftx11.. .,x) —
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Here

ax

is the Jacobian determinant of the mapping. The proof follows from the familiar

rule of substituting variables in an n—dimensional integral.

2.5. Marginal distribution.

Let

XI
X

x2

be a 2—dimensional random variable. Let F(x11x2) be the distribution function

and ffx1,x2) the density. Suppose that we are interested in the distribution of

X1 alone. We denote by F(1)fx1) the distribution of X1 and call it the marginal

distribution. Similarly, we call the corresponding density f(1)tx1) the marginal

density. Obviously we have

F(1)fx1) pX1 x1) p(X1 x1, X2 Ftx11)
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The corresponding density is obtained as

f(1)(x1) = If(x11x2) dx2

The procedure generalizes to higher dimensions in an obvious way. Let X be n—

-dimensional and partitioned as

Xm
X ,say

X(

In

The marginal distribution function of the mn—dimensional random variable Xff) is

obtained as

F(l)(XI,...,Xm)

The density follows from

f(1)fx11.. ,Xm) . ,x) dx1 ... dx
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2.6. Stochastic independence.

Assume again a 2—dimensional random variable

xl
x

X2

Suppose that the density decomposes as

f(xf,x2)=ff1)fxf)f(2)fx2)

The two 1—dimensional random variables X11X2 are then called stochastically

independent. The probability of the joint event (x1 e A1, X2 € A2) is

pX1 e A, X2 e A2) = ‘ f(x11x2) dx1dx2

I 1ff1)fX1)ff2)fX2) dx1dx2 ff(1)tx1) dx1 • ff(2)(x2) dx2 =

p(X1 e A1) pX2 € A2)

This allows one to view X1 and X2 as the outcomes of two completely independent

random experiments. There is no coupling between these two experiments. Knowing

the outcome of experiment 1 tells us nothing about the outcome of experiment 2.

The concept of stochastic independence carries over to more than two dimensions

Represent an n—dimensional random variable as
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f x

fx(1)
x

If the density decomposes as

f(Xi,...,Xm,Xm÷i,...,Xn) f(1)fX1,...,X) f(2)(X÷1,...,X)

Then the two subvectors X(),X(2) are called stochastically independent. Again

it holds that

P(X(I)6 A1, X(2)€ A2) PX(1)6 A1) PX(2)€ A2)

for any Borel sets A1, A2 of appropriate dimensions.

An interesting specia] case arises if

B – 17
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The components X11. ,X are then mutually independent. We have

pX1 e A1 ,. . ., X € A) pX1 e A1) p(X2 e A) ... pX € A)

Another point of interest is the following one. Suppose that the two subvectors

X2 of X are stochastically independent. Let

Yfi) = 1tI)

Yf2) 2fXf2))

be two functions, where Yf1) depends on Xf1) only. Then Y(1), Y(2) are also

stochastically independent.

7-
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3. Expectation, variances and covariances.

3.1. Expectation of a one—dimensional random variable.

Let I be a I—dimensional random variable having a probability density f(x). The

expectation E(X) is defined as

E(X) = f(x) dx

Obviously EfX) represents some mean value of the random variable X. The various

possible outcomes of X are averaged in agreement with f(x) as weight function.

If a random variable is observed many times, and if the arithmetic mean of all

outcomes is taken, one expects that the arithmetic mean is very close to EfX).

The above integral may not exist. However, in our applications existence is

always tacitly assumed.

Let the one—dimensiona] random variable Y be a function of X

Y = !pfX)

Y has an expectation of its own. It may be defined in two different ways.

(1) The density g(y) of Y may be calculated as indicated in section 2.4. One

then defines

ECY) = fy g(y) dy
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(2) One may directly define

E(Y) ffx)f(x) dx

It may be shown that both definitions coincide. The equivalence proof is easy if

X and Y have densities and if the mapping Y (X) is one to one and smooth.

3.2. The variance of a 1—dimensional random variable.

We denote for the sake of brevity:

EfX) = Ix ftx) dx

We put pfX) = fX—)2 and calculate the expectation of fX). The result is the

socalled variance of X:

2(X) Et(X-)2) = x-2 ftx) dx

Obviously 2tX) measures in some way, how strongly X varies around its

expectation. If the density f(x) is very much concentrated around j. = E(X), we

anticipate a small variance. If ffx) has very wide and strong tails, the

variance will be large.

3.3. Various kinds of observation errors.

In geodesy an observation 2 is imagined as the superposition of a true value

plus an observation error £.

B – 20



— B.3.3 —

The observation error is a random variable, so is the observation 2. The true

value , is an (unknown) constant.

The expectation of the observation error

E(&)

is called the systematic error of the observation. It systematically falsifies

the observation, because

Ef2) ECZ+6)= Z+)f(&)d6

ff()d6 + !f(e)d€ = ? ÷ Eta)

1

The underlying assumption in least squares adjustment is

E(6) 0

This assumption is frequently violated. Hence least squares adjustment is not

always optimal.
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The variance of £

= - Ef)) f(s) d

is called mean square error. The square root

- E(E))2 fft) d

is called root mean square error. The variance of 2 is also 2f), because

= I [L+-f÷Ef&))J2 fft) d&

= I f-Ef&)) f(e) d
—.

3.4. Simple computational rules for E(X), d2(X).

Some of these rules have been used in the previous subsection. Let c, c1, c2

denote any constants. Then:

I

.1

Ef cX)

Efc+X)

Efc1÷c2X)

cX)

t ci)

2tc÷X)

2tc1÷c2X) =

= c E(X)

= C + EfX)

= c1 + c2E(X)

c22X

= c fX)

d2(X)

c222fX)
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3.5. The case of higher dimensional random variables.

Let X (X11. .
. be an ni—dimensional random variable. Let ffx1, . . ,x) be

the joint density function. The expectation of X is defined as a vector

[Ex11
EfX2)

E(X)

E(X)]

With

E(X)
=

.1.. .1 x.1f(x11.. .,x) dx1.
.

I x1f1fx) dx

Here

f(1)fX1) If(x1,. ..,x1_11x,x.÷11.. .,x) dx1. ..dx1_11dx1÷1. ..dxm

is the socalled marginal density of x1.It is the density of X1 considered as a

one—dimensional random variable. Confer section 2.5.

Let

y = !pfx)

denote a mapping from Rm into R. In component notation we have
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y1 (x11..

Y2 2I’

y (x11.

The mapping also maps the random variable X onto the random variable Y.

Y fX)

The expectation of Y may be computed in two different ways:

(I) The joint density g(y11...,y) of Y may be calculated. One then defines

EfY1)1

EfY)=

EfY)

with

E(Y1)
= :••

.yg(y11. ,y dy1. ..dy

= dy1

Here g(1 ) is again the marginal density of the component ‘(
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(2) One defines directly

U

E(Yj ) I
. •1y fx1 , . . ,x) dx1 .

. .dxm

Both definitions are consistent.

3.6. Covarince matrix

The covariance matrix of the random vector X is defined as

dinll

dnimj

= E(X- )(X- ))

= 1)(x— ) f(x1 .Xm) dx1.. dxm

The diagonals

= 2fX) = Ef(X1- L1)2)

are just the variances of the individual components of X considered as

onedimensional random variab]es. The off—diagonals

= EfX1- )(X- ))

= ZfX) =

with
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are something new and deserve discussion. Clearly, o’ measures in some way a

coupling between the deviations of X from its expectation and the deviations of

X from its expectation If X and XJ have a tendency to deviate either both

positively or both negatively from their expectations then will be positive.

This does not mean that a positive X1— j cannot occur together with a negative

X— . However, in the majority of cases the signs will be coupled as

indicated. Similarly, will be negative, if a positive X1— prefers to be

coupled to a negative Xi— and vice versa.

3.7. Propagation of expectations and covariances.

It suffices to consider linear inhomogeneous mappings

Y = AX + b

Here X is n—dimensional and Y is n—dimensional. A is a known nxm matrix and b is

a known n—vector. From the linearity of integrals we derive at once the

following important relations.

E(Y) = EfAX+b) = A EfX) ÷ b

(Y) = fAX÷b) = A ZfX) AT
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This is equivalent to

‘ =AAT

which was to be shown.

mark: The second law is called the law of propagation of covariances. In

geodesy it is usually and simply called “the’ error propagation law.

3.8. Important special cases. .:.,

If X1 and X2 are two random variables having a joint distribution then

EfX1÷ X2) = EfX1) ÷ E(X2)

Also

÷ 2X2} = Z1E(X1) ÷ Z2E(X2)

This is the linearity property of the expectation.

If X is a random vector, and if Z(X) is of diagonal form

[I1 0 . ... 0 1
22

(X) .

[a
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Then the components of X ate called mutually uncotrelated. If Y is a

onedimensional function

a1x1÷ .. ÷ ax = aTX

Then
T fl ‘ ‘

fY) = atX)a aoLfX)
1 1

3.9. Zero correlation and stochastic independence.

Suppose that X is 2—dimensional

xl
x=

C

Let the covariance matrix be

Cli 01
V fX)

0 C22

The two components are then uncorrelated.

Assume now that X1, X2 are stochastically independent. As we know from section

2.6, this is equivalent to

ffx11x2) fç1)(X1) f(2)(x2)
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We show that stochastic independence implies zero correlation:

I2 = : f.(xII)r2) f(x11x2) dx1dx2, = Efx1), 11,2

12 =
f x1-1 ) (x2-2) f( 1) (x1) 2) (x2) dx1 dx2

= I fx1-1) f(1)fx1) dx1 I fx2i2) f(21(x2) dx2

= EfX1—1) E(X2—2) = 0.0 0

The converse is not true. Zero correlation does not necessarily imply stochastic

independence.

The concept of zero correlation generalizes to more than two dimensions.

Represent an n—dimensional random vector as

XL

=

Xrn Xw

X(2)

j
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Suppose that the covariance matrix looks as

t ‘‘
0

zil

0

0

The two subvectors X(1), are then called uncorrelated.

In section 2.6 we called X(1), X(2) stochastically independent if

One shows again that stochastic independence implies zero correlation. The

converse is, however, generally not true.
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4. The Gauss—Markoff model of least squares adjustment.

4.1. The stochastic model.

Remark on notation: From now on it will be completely impossible to adhere to

the convention of using Latin ]etters for vectors and Greek letters for

coordinates.

Let 1 be the vector of observations. Its components are denoted 2, as in

section A.6.1.

=

2 is viewed as an n—dimensional random variable. In the mathematical sense, 2

comprises n measurable functions 2fi) mapping the set Q introduced in section

1.2 into R. The image space R will be denoted L in the following. It is a

vector space. Sometimes L is called sample space or space of realizations of 2.

Once the observations are taken, the result are n numbers, the coordinates of a

vector in L. Although it is logically unsatisfactory, this vector will

occasionally be denoted by the same letter 2.

We introduce the vector of observation errors and the vector Z of “true”

observables by the equation
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Z are constants which are generally unknown. They are true

height differences, i.e. observable quantities unaffected

As a vector of constants, Z can be viewed as a vector in

L. Although I is generally unknown, some a priori

available. It is known that the n unknown quantities I.

in terms of rn unknown parameters x11.. .,x, whereby in

a11x1

a21x1

÷ a12x2 +

÷ a22x2 ÷

÷ almxm

÷ a2mxm

Shortly

with

a1x1 + a2x2 + . . . + ax

= Ax

a11 . .
.
a

a1 anm

The nxm matrix A is assumed of rank m. Note that we use Latin letters now for

the elements of A and the coordinates of x.

Example: Consider a leveling network involving the stations P0, P1,

height H0 = 0 of P0 is known. The heights H1, H2, H3 of stations P1

unknown. Assume height difference measurements 1, 203, 112, 213,

The components of

angles, distances,

observati on errors.

n—dimensional space

information on it is

linearly expressible

by

the

are

n.

P3. The

P3 are

P2,

P2

223

B – 34



— B4.3 —

h01 = H1— H0 = H1

h03 = H3— H0 = H3

= H2- H1

h13 = H3— H1

h23 = H3— H2

h01

h03

h12

1 00

0 01

—1 1 0

—10

corresponding to Z = Ax.

F]

P2

Fig. 4.1.

The true (unknown) height differences are

Thus we have

H1

H2

H3

- h2 0 —1

Remark: The requirement Z Ax is equivalent to restricting the vector ? to the

B – 35
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subspace LA spanned by the columns of A. This subspace could equally well be

described by a set of n—rn functionals:

€ LA is equivalent to (B1)TZ o

where B’ is an nx(n—m) matrix of rank n—rn, chosen in a way that

fgI)TA

This would lead to the concept of adjustment by conditions.

Example: Refering to the above introduced leveling network, we have two

condition equations of the form

h01 ÷ h13 - h03 0

÷ h23 - h13 = 0

i.e.

1—1 o 1 0 [h01 to

o o i—i 1 h03 = 0

h12

h13

h23

This corresponds to

= 0

B – 36



— B.4.S —

We adhere to the model of adjustment by parameters x in

= Ax

Recall the representation of the observations in terms of true observables

and observation errors &.

2

We now introduce the important requirement

E() 0

It implies

E(1)

or

EU) = Ax

The requirement Ef) = 0 means that the systematic error of the observations is

assumed as zero. The observations are “unbiased”. The postulate of unbiased

observations is far reaching in theory. Unfortunately it is rarely fulfilled in

practice. Many difficulties encountered during the practical application of

least squares adjustment are caused by the failure of the observations to be

truly unbiased.

We assume the covariance matrix of € in the form
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Here Q is a known symmetric and positive definite nxn matrix. In most

applications Q will be a diagonal matrix. The scalar factor 2 is called mean

square unit weight error. It may be assumed either as known or as unknown.

Since the random vectors 2 and € differ only by the constant vector ?, i.e.

2 the covariance matrix of 2 is identical to that of C:

(2) = f&) =

We summarize the basic assumptions of the Gauss—Markoff model as follows

EU) Ax

sf2) =

The vector 1 is the vector of observations. The known matrix A is sometimes

called design matrix. The unknown vector x is the vector of parameters. The

known matrix 0 is positive definite. Its inverse

p =

is called the matrix of observational weights. The scalar d2 is either known or

unknown. It is called the mean square unit weight error.
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4.2. Unbiased estimates.

Let denote a linear functional on LA. Because any vector in LA is identified

by its coordinates x (x1 , . .
. with respect to the bases represented by the

columns of A, the functional p may be represented as

÷ x2 ÷ ... +

Thus a functional on LA is a linear homogeneous function of the unknown

parameters.

Example: Refering to the above introduced leveling network, we have an example

for a functional by

T t1 1
C ) H1 - fH1÷H2÷H3)

H2

H3

It is the mean value of the heights H0 0 and H1, H2, H3. Another example is

simply

TH. (010) H1 H2

H2

H3

the height of the station H2.
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A third example is:

TK = t 0-1 1 ) H1 H3 - H2 h23

H2

H3

the height difference H3 — H2.

Example: Consider a network adjustment. The observations are angles, distances,

azimuths, Doppler positions etc. The vector represents the observation

increments after linearization of the observation equations. The parameters x

represent coordinate increments. A functional !P may be the (linearized) distance

between two remote stations. Alternatively it may refer to an azimuth between

any pair of stations, or to an angle between a triplet of stations. Also the

area defined by a polygon whose corners are a subset of all stations is (after

linearization) a functional of the considered type.

Remark: It is important to note that also any component x1 of the parameter

vector x may be viewed as a functional on LA. Recall section 2.8 where we

pointed out that coordinates may be viewed as functionals. The functional x1 is

represented by

(0010 ..,0)

i.e. by the i—th row of the mxrn unit matrix.
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Remark: It is further important to note that any component Z, of the vector

= Ef2) may be viewed as a functional on LA. Indeed we have

a11x1 ÷ . . . +

This means that Z1 is represented by

(a11. . .,ajm)

i.e. by the i—th row of the matrix A.

The parameters x are unknown. Hence the value of the functional (x) ‘x is

unknown. The purpose of statistical estimation is to give estimates of p = fx)

in terms of the observed values of 1. Such an estimate is denoted . It is a

function of the random vector 1. Thus is a random variable. It has an

expectation E() and a variance 2•

We restrict ourselves to linear estimates

l2t +222+

Shortly

p1

pn

Remark: The vector pT can be viewed as the lxn matrix representation of a linear
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functional defined on L.

The expectation of is

Ef) = ECT2) = T(g) = TAX

It is seen that the expectation E() is a linear form in the unknowns x. The

requi reinent

Ef) TAX for any x

results in the fundamental concept of a linear unbiased estimate (abbreviated

LUE).

The requirement

TAX Tx for any x

is equivalent to

TA

4.3. Best linear unbiased estimation.

The variance of the linear estimate

= T2

B – 42
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is given by

2f) Tf2) Tp 2

We are looking for an unbiased estimate having a minimal variance. It will be

denoted and called best linear unbiased estimate (BLUE).

The BLUE is the solution of the following extremum problem. Find such that

= Minimum

subject to

The minimum problem is purely algebraic and can be attacked by means of

Lagrange—multipliers. However, we may also make use of the fact that the minimum

problem was essentially solved in an earlier section 5.5, using a different

notation.

A indicated above, nothing can prevent us from viewing as the matrix

representer of a linear functional on L. The space L was called the sample

space. It is the space of all possible realizations of the random vector 2 of

observations. Recall that Z was assumed in L and that LA was assumed as a

ubspace of L.
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We assign a norm to our functional by putting

titi2

Up to the factor 2 the norm of the functional b is nothing but the variance of

T2 viewed as a linear function of the random vector P.

The matrix 0 is interpreted as representing the inner product of functionals on

L:

In agreement with section A.4.9, 0 is called the reproducing kernel of L. It

follows that the inner product in L is represented by the matrix

p

The functional = Tx is only defined on LA. The requirement

TA

is. equivalent to requiring that the functional shall coincide with the

functional p if applied to vectors out of LA. The functional is an extension

of . Confer section A.5.5. Among all such functionals we search for one having

minimal norm. According to section A.5.5. on projection of functionals the

solution is given by a functional defined on the whole of L, coinciding with q
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on LA and vanishing on L8, the orthocornplernent of LA in L:

2 e L

Given a vector 2 € L, we form A2• We find the coordinates of

A2 = Ax

and we form

f2) =

The projection A1 is given by

A2
= A(ATPA)IATP1

Comparing with

A2 = Ax

we recognize

(ATPAYATP1

Hence

(2) TfATPA)ATP2
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This is also obtained by the following rule. Solve the normals

(ATPA) = ATP2

and apply the functional to the adjusted parameters .

f2) -

The minimal variance u2f2 of the best estimater for = is given by

TQ 2 = I(ATpA)-IAIp

Because PQ = I, one obtains

= T(AIpA)-t d2

4.4. Error calculus.

The adjusted parameters are linear functions of the observations

= (ATpAYATp1 = EQ

The expectation of is x. The estimators are unbiased

Ef) EfBQ) BEf1) = EAx

fATPAY1ATPAx = x

-
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The are BLUE for x (i.e. 3 is the BLUE of xi). This is also seen by putting

(0,.. .,O,1,O,.. .,0) where the I appears at the i—th position.

The covariance matrix of is obtained as

f) BZf2)B = BQBT2 =

(ATPA)ATPQPAfATPAY’o2 (ATPA)CATPA)fATPAYIo2

fATPA)i

The covariance matrix of the adjusted parameters is the inverse of the normal

equation matrix multiplied by 2

Remark: Note the validity of the error propagation law

f1) -

Hence

2(T) 9T(ATPA)—I 2

as before.

Instead of a linear functional !pTx, we now consider a set of p functionals

= Px

Here is a pxrn matrix
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l1

sp,n

Any row of 4 represents one linear functional. Hence we immediately obtain that

the best unbiased estimators for all functionals comprised by • are given by

• =

Their covariance matrix is

f) •Z( •fATPAY2

One example for • is given by

• = Ax

The best estimators are

• = A =

It is usual to call them “adjusted observations”. Their covariance matrix is

1) = A(ATPAYlA2

This is sometimes called the “a posteriori covariance matrix” of the
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observations. The “a priori covariance matrix” is, of course, given by

sf2) Q2

The residuals v are defined as the difference between adjusted and observed

values.

v 2 — 2 — 2

Inserting for , we obtain

v —fI—AfATPA)ATP)2

B1

The covariance matrix of v is obtained as

(v) PtQP2

= (Q_A(ATPAY1AT)d2

One notices:

1(2) 1(1) ÷ 1(v)

This is the familiar theorem of Pythagoras in a new disguise.
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It is also interesting to calculate the common covariance matrix of 1 and v.

1 A A(ATPAYYATPI

v -fI-A(ATPAY1ATP)1

One finds

I Zt2) 0

v 0 (v)

where (2) and Ztv) are the expressions derived above. The remarkable thing is

the zero correlation between 2 and v. Zero correlation is the stochastic

counterpart to the geometric concept of orthogonality.
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5. Applications of the error propagation law.

5.1. Trianqie with three measured sides.

Consider the triangle of fig. 5.1.

Fig.

Assume that a,b,c are measured Let the covariance matrix of the measurements be

a = m

b 0

C 0

o o
ni 0

o m

b2 + C2 — a2cos 2bc arccos + — a2
2bc

a

C

5.1.

What is the variance of the angle x?

By the law of cosine we have

a2 b2 + c2 — 2bc cos

or
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We have expressed ix as a function of the observations a,b,c. However, the

function is not linear, and does not allow an application of the error

propagation law in its standard form. We must linearize the dependence of ix on

a,b,c.

We assume that ma, mb, mc are small compared to a,b,c. We represent

a = a0 ÷ Aa, b = b0 ÷ Ab, c c0 ÷ Ac

Here a0, b0, c0 are fixed values, Aa, Ab, Ac are random variables. Because they

differ from a,b,c only by constants a0, b0, c0, the covariance matrix of Aa, Ab,

Ac is the same as that one of a,b,c:

Aa a m 0 0

Ab = b 0 m 0

Ac c 0 0 m

Call

b2÷ 2_ 2
C0 a0

= arc cos ——

2b0c0

and let
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then

a2b2÷c2—2bccos

goes over into

(a0+ Aa)2 fb0÷ Ab)2+ (c0÷ Ac)2 — 2fb0÷ Ab) (c0+ Ac) cos(0÷ A)

Applying Taylor’s formula, and keeping only the linear terms, gives

2a0Aa 2b0Ab + 2c0Ac — 2tc0Ab + b0Ac) cos ± 2b0c0 sin ri0A

The constant terms cancel due to the consistency of a0, b0, c0 and cxci. We solve

for Ax obtaining

b0c0sin a0Aa — fb0— c0cos 0)Ab
— fcLbOcos 0)Ac }

We abbreviate this as

= CaAa + CabAb + CAc

This is the desired linearized relationship. We immediately get the variance of

A by
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C rn ÷ C in ÷ C tn

_2a
Cb!..P1a T’ F

C=t
F

with F being the area of the triangle, and Pba and Pca being the projections of

b and c onto a as shown in fig. 5.2

Fig.

The covariance matrix of all angles (which is the sane as that one of A,

, y) is obtained

J

2
b ‘c ma

C$b C • 0

Cyb C 0

It is interesting to calculate the variance of

++ V

o o[ EC Ca cial
m 0 Cb Cb Cyb

o [Ccc Cc C]

— B.5.4 —

The geometric meaning of Ca, Cab, C is seen from

P

b
a

c Pca

5.2.

a

C
=

Ca

Ca

Cy a
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Because this sum equals z, which is a constant, we must have

(1 1 1) fix,,y) (1 1 0

This is easily verified to be correct. From the geometric meaning of the C’s one

easily recognizes that e.g.

Ca ÷ Ca + Cya 0

Remark. If b+c = a, the area F of the triangle becomes zero. The quantities Ca,

C, C then are infinite. The mean square error m becomes infinitely large.

This is not entirely meaningful since one could argue that an angle of a

triangle is bounded within the interval [0,x]. The reason for m tending to

infinity for b÷c —* a is the linearization of the dependency of ix on a,b,c. For

b÷c —÷a the higher order terms are no longer negligible. The degeneracy of a

triangle into a line segment is a critical configuration. The angle ix becomes

very poorly determined. The linearized theory signals this degeneracy. However,

it exaggerates somewhat by letting the error of ix tend to infinity.

5.2. The first fundamental problem in the plane.

Let a point P with coordinates x0, y0 be given. Assume that its coordinates are

known and free of any error. Let the distance s and the azimuth ix to another

point P with unknown coordinates x,y be measured. Let the covariance matrix of

s,ix be
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vs -

L 20

The coordinates x,y are computed by

x=xo÷scosx

y = y0 + S SIflIX

What is the covariance matrix of x,y ? Linearizing the relationship we get

Ax = cos As — s sin A

Ay = sin As + s cos A

For simplicity we have refrained from distinguishing between s, and their

approximate values. Applying the error propagation law we find

[x] — [cost —s sin] [m 0] [ cos sin]

y sin —s cos 0 m —s sinx s cos

Calling

x =

y rn1

we find

rn rn cos2 + sin2 sin2

[rn — (sni)21 cos sirnx
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= rn sin2 + fsm)2 cos2

Discussion. We see that x and y are correlated unless

= $ m

i.e. unless the error of the distance s equals the error of the lateral

deviation in P due to the azimuth error. If this equality holds, it also implies

mxx —

The accuracy of P is equally good in all directions. We shall make this

statement precise in the next subsection.

5.3. Error ellipses.

In this subsection we prefer to call the coordinates in the plane x1 and x2

instead of x and y. Suppose then that

X fX1 X2)T

are the random coordinates of a point in the plane. Let the covariance matrix of

X be

mu11 m12
fX) M

m21 m22
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M must be positive semidefinite. We assume that M exists, i.e. we assume that

H is positive definite.

Definition. Let x = fx1, x2)T be points on the curve

x’ M1 x 1

This curve is an ellipse. It is called the error ellipse of the point.

The curve is an ellipse because M1 is positive definite. (The inverse of a

positive definite matrix is also positive definite. The proof runs as follows:

xTM_x = XTWIMM_IX (M_lx)TMf H_tx) = YTMY with y = Mx. Now yTMy > 0 because

H is positive definite.)

Let

‘ )‘ (cos

be a unit vector in the plane. defines a direction which is also given by the

direction angle p. We call

÷ = x1 cosp ÷ x2 sin

the error of the point in the direction . Note: TX is the projection of I
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onto the line having direction .

By the error propagation law we get

— B.5.9 —

a2(TX) = TM = + 2m1212 + m22 =

rn;1cos2 ÷ 2m12cos sin + in22sin2p S2i, say

An ellipse is a closed convex curve. Any convex curve has a support function

p() with respect to a chosen point located in its interior. See fig. 5.3 for

the definition of the support function.

Theorem. Sf!p) is the support function of the error ellipse with respect to the

center of the ellipse (see fig. 5.4).

1’y

y

Fig. 5.3.

—
—. x

Fig. 5.4.
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Proof. Let x0 be a point on the error ellipse. The tangent line through this

point is given by

xMx = 1

[For a proof note that the gradient of (xTMx — 1) taken at x = x0 is a vector

orthogonal to the ellipse. This vector is 2 Mx0. We may cut its length by 1/2

obtaining M1x0. Thus the tangent line is (Mx0)Tfx
— x0) = 0, or

T-l 1-1 T —I T —1x M x x M x0 0 or x0M x 1, because x0M X0 1.]

Introducing the normal unit vector of the tangent

llMx0IF1 Mx0

we write the tangent line in its “Hess&’ form

= llMx0r’

we see that

pf) IIMx0IF1

is the distance of the tangent from the center. What we want to prove is p(p) =

S(!p). Now
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= !IM1x0IF2 fM1x0)’MfM1x0) IIMx0tt2 xM’x0 =

IIW1x0It2 p()2

because xW1x0 = 1. This proves the theorem.

Remark. The theorem and its proof carry over from two to n dimensions with

hardly any change. (Of course it takes more than one angle !P to define a

direction in n dimensions. A direction in R is in the best way defined by a

unit vector .)

Remark. The question for the maximal and minimal values of S() is equivalent to

the question for the direction of the principal axes of the error ellipse. In

two dimensions one finds the directions as solutions to the equation

2 m12
tan 2!p =

_________

m11 — m22

If m11 = m22 then y becomes indeterminate. The error ellipse becomes a circle.

5.4. Polar survey with redundancy.

P

P1
2

Pz

Fig. 5.5.
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+ ( )2 cos2ix1
+

sintx2 + fs2m )2 cos2ft2)

One also recognizes that

fx,y) = [ 1fx,y) ÷ 2fx,y) I

where Z1(x,y), 2fx,y) are the covariance matrices obtained for P in section

5.2, if the role of P0 is taken either by P1 or by P2.

5.4.2. The adjustment expert’s solution.

The observation equations fin nonlinear and implicit form) are

x x + (s + v ) cos f ÷ v )1 1 s 1

y y1 ÷ + v5) sin f ÷ v)

x = x + (S + v ) cos (x + v )2 2 2 2 2

‘ + 2 + v5) sin 2 + v)

approximate values yt’ for x and y. We introduce coordinateWe assume

increments Ax, Ay by

x + Ax

fo)
+

The linearized observation equations are
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We exhibit the normal equation matrix. Its elements are

= rn;2 cos21 + (s1rn
)—2 sin2 + m cos22 ÷ fs2rn r2 sin22

=
— fs1rn Y2} cos1sin1

+
— fs2m Y2) cossin2

g22 m sin21 + (stn )2
COS2 + m sin2c2 ÷ (s2rn )2 cos2

The inverse matrix

=

g2

is the covariance matrix of the rigorously adjusted coordinates x,y.

5.4.3. Comparing the two solutions.

Call the covariance matrix from the practician’s solution and a that one

from the adjustment, i.e. a G. Because a is the covariance of the best

linea” unbiased estimates, any linear function of the rigorously adjusted

coordinates must have a variance less than or equal to the variance of the same

linear function applied to the practicia&s coordinates. This must in particular

be true for linear functions

cosp x ÷ sin y

which led to the concept of error ellipses. From this one may infer that the
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error ellipse of the adjusted coordinates must be situated in the interior of

the practicia&s error ellipse. See fig. 5.6.

5.5. An area calculated from polar survey.

Consider the problem illustrated by fig. 5.7.

From a station P0 whose coordinates in a local system we take as x0 y0 0, we

measure distances s and direction angles v1 to the points on the circumference

of a polygon. The direction angles are taken with respect to a local axis as

shown in fig. 5.7.

Fig. 5.6.

Fig. 5.7.
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/j /

—

b,

———)

Fig. 58.

Thus, while a1 rarely becomes zero, the b1 may vanish under certain symmetry

conditions. For examp]e, if the polygon is regular, and if the station P0 is

located at the center, then mF will depend only on the accuracy of the distances

• This again must be seen in the light of the first order Taylor expansion

which underlies the error analysis.

5.6. Conventionally adjusted regular traverse.

In fig. 5.9, stations marked by triangles are fixed, those marked by circles are

unknown.

1 2 9 4 5 6 ‘

(N L
S12 23 34 545 56 56n

1 2 3 4=!!i 5 6 7=n. . odd

Fig. 5.9.

We assume that the distances ii,.. .,n—1 are measured, as well as the

angles
,

i1,. .. ,n. Let ms, m be the corresponding r.m.s. errors. We are
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interested in the accuracy of coordinates of the central station fn+I)/2.

We must express those coordinates in terms of measurements, Because the

measurements are redundant, we must know how the traverse is adjusted.

We assume that, as usual, the angles are adjusted first. They are constrained by

1 ‘2 + -flz

Due to measurement errors, there will be a discrepancy

+ ... + nz+w

It is divided by n, and each angle is replaced by

=
—

n

Now the coordinates of the last station are calculated by considering a free

traverse leading from station I to station n, and having measurements i i÷ and

i.

One gets:

n—t n—i

=
cos y s÷ sin v1
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(n—i )/2
Z As

i1 i,i+1

tn—t)/2 t } A n21
jf L 8n — 1

i(n.1)/2

The coordinate discrepancies at station n are now redistributed. This results in

adjusted coordinates at the midpoint given by

fn—1)/2

i,i÷l
n—t

= A’ — Ax As — I As.
it 1tn+t)/2 i

fnL)/Z c 3n2÷4n+i 1 n+lI 8n - - - ) ) i

I’ n2—1 1 n+i
+

ifn+1)/2 -

___

- f - i ) )

IfnU/2 fn+1)2 I { Cn+1)2 n—i+1 ) AI
i-i 8n — } 1 j:(n+1)/2 — 2

One verifies that the coefficients of A1 and A_1÷1 are equal. This is

desirable from reasons of symmetry.

From the above expressions follow the mean square errors of as

rn-2 - n-i 2

Ujf2 fn+t)2 I ) 2 + ( (n+1)2 — n+1 2
- =2 1

1=1 - n 1)

fntJ/2 fn+1)2 i } 2 + ( Cn+t)fn—1) ) 2
i1

(
fl — 8n
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t f (n÷1)4(n—l) — fn÷1)2 tn÷l)fn—1) ÷ zi nti o +
32n2 2n 8 2 26

f fn÷1)fn—1) , 2
8n I

We obtain:

— fn2—I)(n2+3)B1,1
— 192n

The leading term is implied by

- 192

Summarizing:

= flji m52 m
=

rn5

.2 — fn2—I)fn2+3) - p
— t92n m

— 8 ‘IT

These results confirm our intuition: in a stretched traverse, the transversal

accuracy is far inferior to the longitudinal accuracy.

5.7. Rigorously adjusted regular traverse.

It will turn out that, in case of a regular traverse, conventional adjustment is

equivalent to rigorous adjustment.
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Rigorous adjustment is most easily done by conditions. The three linearized

conditions are

0 (from Ax 0)

I 0 (from I nz)
1=1 i=t 7
n—t I
I I 0 (from Ay = 0)

1=1 j=1 3 n

The adjustment problem decomposes into one for distances and one for angles. We

deal only with the problem for angles which is the mote difficult one. The

conditions are rewritten as

(n—1) ÷ fn—2)A2 + ... ÷ O.A = 0

We orthogonalize the conditions by subtracting a proper multiple of the first

one from the second, obtaining:

l + =0

ri ÷ ...

The normal equations are

n 0 k1 w1
=

0 1 k, w
1—fn—L)/2

B – 74



‘
_

c
,

—
I

-
4

I

U
,

(NU
,

—
C

.J

—
-

-

-
j1

C
%

J

cz
c

++

t—
I

c
,l

—
I

I
•
•
•

I
:I

c::I

-
4

-
4

I

1
’,

a
,

czC
o

.a
)

1
)

Z
I

-C
o

0
)
-(
40><C

o
Ea
,

C
)

CC
o

C
o

0C
)

a
,

+

C
%

J

+

±

C
%

J
+

C
’)I

c1
•

÷.
+

II
÷

I
I

V
)

C
o

c

C
J

l
a
)

.
3
]

C
o

7
L

+
V

1
C

f
C

%
J

•
I
-

l
)

+
a
)

t
-

C
-
4

0
3
]

.
‘
-

IIC%
-I

E
_

C
I

0
•
,
-

-

4
-

—
I

-
+

Ik
J

C
U

a
,

c1
0

—
-

-I.-)
C

-)
-

C
o

a
,

a
,

.r
-

-
4
-)

4
-
)

4
-.’

,
,

a
,

4
-0

U
4

]
U

,
a
,

a
,

>
•
1

C
o

.

a
,

a
,

B – 75



— B.S.26 —

The mean square error of is obtained as

2 i fn—1)/2 tn—t)/2 2 1= 2 — i ) .

— I n—i n+I n 1 A f n—i n+I 2 1
2 2 2 54’t 2 4 J

— ntn2—1) (n2—1)2 — fn2—t)fn2+3)
— 48 — 64n — l9Zn — 192

This is exactly the same result as it was obtained in the previous section.

5.8. Systematic errors in a regular traverse.

We shall answer the following question. Suppose that the actual error of any of

the angles x is bounded by a small quantity c. What is the maximal error in

that can arise under this assumption 7

From the previous sections we know the best estimator for M as

(nL)/2
( fn+1)2 — } . ÷ { fn+1)2 —

i—j+ )i1 j=fn+1)/2

The maximal error obviously is

fn—t)/2
i (n+i)2 n—f+1

‘1MAX — 1. 8n — 2 i:(n.t)/Z 8n 2

For large n, this sum is approximated by
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(n—t)/2 n
ft — 1 LI — fl—1+

i1 i(n+I)/2

n/4 n/4 . 2
4 Z t—) = 2 t— ) =fri=1 it

Thus

2
A
uJMAX - 16

Comparing this with the r.m.s. error derived earlier

- 8 ‘T

we arrive at the following conclusion:

For n tending to infinity, the ratio

‘1MAX / T ‘ 6

tends to infinity. In a large traverse, the maximal effect due to systematic

errors eventually outgrows the effect of random errors. This statement, at least

in a quantitative way, carries over to other large adjustment schemes, e.g.

those of large continental networks.

—
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C. CONFIDENCE REGIONS AND TESTS OF LINEAR HYPOTHESES

1. Probability distributions used in statistical tests.

Li. One dimensional Gauss distribution (normal distribution).

Let X be a one— dimensional random variable having the probability density

f(x) ç=— expf_ (x—L)2)

One can prove that

Efi) I x 1(x) dx =

2(x)
=

(x- 1(x) dx =

Hence is the expectation or mean value of X, cr is its variance. The square

root of 2 is denoted . It is called standard deviation.

The graph of 1(x) is bell— shaped:

f CX)

04

0.3

0.2

oj

1 2 3 6 5 6 7 B B

/3=5
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Remark: It is frequently assumed that observation errors are normally

distributed. There is no completely rigorous justification for this assumption.

However strong support comes from the centra] ]itnit theorem of probability

theory. It can be shown that the sum of a large number of small random variables

has a tendency to be normally distributed. This holds under fairly genera]

assumptions. The small elementary random effects may be arbitrarily distributed.

Important special case: The normalized Gauss distribution. It relies on the

special choice

0, = 1

consequently

ffx) exp
—

All tabulations of the Gauss distribution refer to the normalized case. That

this is completely sufficient is demonstrated by the following example. Suppose

that the Gauss distribution under consideration is not normalized, and suppose

that one wishes to calculate the probability of X

p{ X =f exp(- (x)2) dx

One changes integration variables

i.e. xj÷

C – 2
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One obtains

2
p{x}= f exp(-f-)

It is seen that one calculates the probability

<

thereby S has the normalized Gauss distribution. In tabulation one usually finds

values of the distribution function

F(x) = expf- ) d

Hence

p{ X Ff) — Ff)

Remark: The probability of the event

—k X—

deTends on k only. It equals the probability of

—k S +k

where S has the normalized Gauss distribution.
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Usually one focuses interest on the complementary event, i.e.

IX—I > k

The probability of X— exceeding the k— limits is small for moderately large k.

For k3 one obtains

p{IX—I > 3i) 0.0027

This is about 3 parts per thousand.

Example: Although we ate currently collecting the theoretical ingredients needed

for statistical tests to be described in detail later on, we briefly pause,

taking a look at a very simple example of a statistical test.

Suppose that a carefully maintained base line is known to have a length of

151.723 m. This value has been verified so many times that we regard it as free

of any error. Suppose that a newly delivered distance meter gives a reading of

151.745. The manufacturers specified a standard deviation (root mean square

error) of 5 mm, if the distance is in the range of 150 m. We make the following

hypothesis: (1) The distance meter is free of any systematic error. (2) No

severe blunder occurred during the measurement. (3) The r.m.s. error of 5 mm

specified by the company is correct. (4) The observations are normally

distributed.

C – 4
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We test the hypothesis as fo]lows. If it is true, our observation is normally

distributed with mean 151.723 and standard deviation 5 nm. The observed value

151.745 is outside the 3— boundaries (which are 151.723 ± 0.015 151.708 and

151.738 respectively). Hence we reject the hypothesis.

Statistical tests to be described later are modelled after this simple case.

However the distribution functions involved are more complicated, and we have to

learn mote about them. Nevertheless, some preliminary questions are posed here:

*) Why do we choose the critical area of rejection as IX—I > 3c, and not

otherwise, for example as X— > 3, or even as IX—I > some constant?

*) A not rejected hypothesis is not always considered as accepted without

reservations. Additional information may lead to rejection at a later time.

iE) The probability of rejecting a true hypothesis is in our case given by

0.0027. A mote difficult question js: How large is the probability to accept a

wrong hypothesis. Obviously the probability depends on wrong the hypothesis

is.

1.2. The multidimensional Gauss distribution (normal distribution).

Let the random variable X be n— dimensional having a density function:

ftx) f(x11. ..,x)

C – 5
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(2)n/2 lAl2 exp- a1 txj-1) (x-)

f2z)fl12
Al112 exp(— - fx_)T A tx—p.))

Thereby the matrix A = (a1) is symmetric and positive definite. The symbol IA!

denotes the determinant of A, which is positive. The vector

p. (i’.’)T

can be verified to be the vector of mean values

EfX) = p.

The inverse

=

can be verified to be the covariance matrix of X

(X) = = A1

Remark: The case n=1 reduces to the one— dimensional Gauss distribution

described in the previous section. Just identify pp.1, a11t2.

C – 6



— C.I.7 —

Theorems on the multidimensional Gauss distribution: Cwithout proofs)

(1) Marginal distribution. Each component X. of X can be viewed as a one—

dimensiona] random variable (cf. section 8.2.5.). As such, X1 has a one—

dimensional Gauss distribution with mean EtX1)
=

and variance 2(X1)

the i—th diagonal element of Z.

Mote generally: Partition X as

= X1)

X(2)

where X(1) and X(2) are vectors of size n1 , n n1÷n2n.

Partition j.L, accordingly

I) II Z12

.L(2) 2l 22

Then X1 has an n.— dimensional Gauss distribution with mean and covariance

matrix :jj; i1,2

ffx(1)) =

n./2 expf- fx1,- (1))T A1 (X()-())),

(2%) 1

A1
=

, 1=1,2
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(2) Linear functions of normally distributed random variables. Let

Y8X÷b

be a linear, inhomogeneous function of X, which is assumed normally distributed

with EfX), fX)=Z. Then Y is also normally distributed with

EfY) = + b, ZfY) BZfX)BT

Note that E(Y), YfY) follow from the propagation laws for expectations and

covariances given in section 8.3.7.

(3) Meaning of zero correlation in case of normally distributed random

variables. Assume that =ZfX) is of the form

t1
22 0 0

=

0 . 0
nn n2

Then the components of X are mutually uncorrelated. As a consequence

2a11
a22 0 lId2 0

A=rI= .

0 . 0

C – 8
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The probabilty density presents itself as

f(x) exp-
fx-1)2

This is true because

Al = [i2 O’2

and

expf- fx)T A1 fx-)] = exp- a (x_1)2

— 1

_________

-

exp— 2
1:1

It is seen that ffx) decomposes as

f(x) f(1)fx1) f(2)(x2)
...

f(x)

where f()fx) is the marginal density of the component X. In view of section

8.2.6. we recognize that the components X. of X are mutually stochastically

independent.

Thus: In case of normally distributed random variables zero correlation means

stochastic independence.

C – 9
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This generalizes to the following situation. Split X, again as

1(1) Lf 1)
X , I.L

Xf2) f.Lf2)

Assume that Z is of the form

Eli U

0

Then the random variables Xf;), X(2), whose marginal densities f(1)(xf1j,

ff2(xf2)) have been specified under (1), are independent. It holds that

ffx)ff1)(x(1))ff2)(xf2))

Remark: An important special case arises if 0, i*j. The

components X. of X are then identically and independently distributed. We have

io, Any component has the Gauss distribution with mean zero and variance

2 If observations of the same kind are taken under identical circumstances,

then the observation errors are frequently assumed to be distributed in this

way.

13. The chi— squared distribution f2_ distribution).

Let X1,.. .,X be mutually independent and normally distributed random variables,

having mean E(Xj=0 and d2(X1)1. Thus any X has the norma]ized Gauss

C – 10
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distribution, and the random vector x(x11. .
,xjr has mean and covariance

matrix given by

EfX) 0, tX) = I

We consider the function of X

fX) = X12 + 12 + ...
+ x2

This is a nonlinear function which may also be written as

XTX

The random variable has a distribution which is called chi— squared (z2J
distribution with n degrees of freedom. An analytical expression may be

specified, but is not needed here. It holds that

E(z2) = n

f2) 2n

The proof of E(2)=n is easy: Since any X1 has the normalized Gauss

distribution, we have E(XJ0 and

E(X2) = = =1

C – 11
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Hence the random variable X12 has expectation E(X12J=1. The random variable

is the sum of n such random variables. Hence its expectation must be n— times as

large (Remember: the expectation operator is linear; cf. section B.3.7.).

The distribution functions F 2 Cx) are tabulated for moderately large values of

n (n<200, for example). For large values of n, F 2 fx) approximates a Gauss
Zn

distribution with mean n and variance 2n.

Note that x2O. Hence F 2 fx)0 for x<O.
Zn

1.4. Student’s distribution Ct— distribution).

Let X1, iDl,...,n again be random variables being mutually independent, and

obeying the normalized Gauss distribution. Let Y be another random variable

having the normalized Gauss distribution, and let Y be independent of any X.

Thus the partitioned random vector

x —

Y
—.

has expectation and covariance given by

I I
E =0, =1

Y YJ
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We consider the function

= (x12÷x22+.. .+Xn2)tn

The distribution of this nonlinear function t of X, Y is called Student’s

distributIon, or t— distribution with n degrees of freedom.

Remark: Note that the denominator can be written as

I(x12÷.. .÷x2)/n = z2/n

where is a random variable having the z2— distribution introduced in the

previous subsection.

Student’s distribution has a density whose analytical representation is not

given here. It is symmetric with respect to the origin t=O. The distribution

function is tabulated for moderately large n (again, n<200 is reasonable). For

large n it approximates the normalized Gauss distribution.

1.5. Fisher’s distribution (F— distribution).

Let X1,.. .,X, Y11. . .,Y be mutually independent random variables having the

normalized Gauss distribution. The quantity

F
= .+X2)/m

m,n f2+

C – 13
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is a random variable whose distribution is called Fisher’s F— distribution with

m and n degrees of freedom.

Remark: Note that is represented as

F - 2fm
m,n

—

i.e.as the quotient of two normalized and independent — distributed random

variables having m and n degrees of freedom.

The F— distribution is tabulated for moderately large n and m tn,in<200, say). if

n becomes very large, the denominator can be considered to be a constant with

value 1. The numerator is then z divided by m. If ni becomes very large, the

argument can be applied to l/FmnFnm.
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2. Canonical transformation.

2.1. Preliminaries.

We consider an adjustment problem in the Gauss— Markoff form

E(2) Ax,

Alternatively, we also consider the conventional form

= Ax, (2)

which shows the corrections explicitely. We assume 2 of dimension n, x of

dimension in, such that A is an n*m matrix, whereby rn<n and ranktA)m.

We subject the problem to a series of transformations such that from the final

appearance nt only the solution can be read off immediately, but also various

statistical quantities needed in tests to be described later. Our transformation

will be a more sophisticated version of the transformation described in section

A.8.5. It will only serve the purpose of mathematical proofs and theoretical

insight. In practical application such transformations are never carried out

explicitely.

Our transformations will not only involve the quantities 2, v, Ax, , showing

up in the above problem formulation. We also consider a set of p linear

functi onals

C – 15
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4) =

defined on the subspace LA which is spanned by the columns of . The rows of the

pm matrix 4) represent linear functions of the unknown parameters x.

Statistical tests to be described later will be concerned with hypotheses like

= C

where c is a vector of p constants.

2.2. Making the functionals a part of the parameters.

We augment the p*ni matrix by an (m—p)*m matrix ‘P such that

becomes an m*m regular matrix. We introduce new parameters

yl
y=

by

y Cx, or y1 4)x, y2 = ‘Px

C – 16
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x C1y

- C.2.3 -

and our adjustment problem transforms as

or

or

2+v = ACy

1÷v = Ay,

1+v = A1y1

A = AC1

+ A2y2

The first set of parameters refers now directly to the p functionals: y1=x.

2.3. Orthogonal decomposition of the space LA.

As usual, we view the realizations of 2, as well as ZE(2), the columns of A, A,

as members of an inner product space L. The inner product is represented by

p =

Note that A and A span the subspace LA

of those of A). In an analogous way as

reduction, we decompose the space LAzL

and L. The only change with respect to

over the A11s, and an interchange of the

(the columns of A are linear combinations

described in section A.93. on partial

into ortho— complementary subspaces L

section A.9.3. is an additional overbar

subscripts 1 and 2. As we know from the
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cited section, the orthogona] decomposition goes along with a parameter

transfortnati on

yl yl

Z2 - (A2TPA2)’ A2TPA1

The result is the transformed problem

2+v = A1y1 + A2z2,

with

= A1 - A2 (ATPA)1 A2TPA1 = (i - A1

and

ATPA 0

2.4. Orthogonal decomposition of L into LA and L8.

Such a transformation has been used in several earlier sections. It is

accomplished by

1 A2, B) 2’

or

(1TPAj’

1 = 22’ = (A2TPA2) A2TP

2

C – 18
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Shortly

1’’ = 52

The matrix B fulfills ATPB=O, and also A1TpB=o, A2TPB=O. Our adjustment problem

transforms into

(ATp)_t o o
= z2 , o (ATPA]_t

3l+v3’ = o o o (BTPB[_t

Already at this step we see that the best estimates and corrections are

Vt’= 0

Z2 22, V2 = 0

— —13_ 3

Remark: Recall the geometric interpretation of this transformation. A new basis

is chosen in L. The new basis is the union of bases in L , L— , L . These 3A1 A2 B

subspaces are orthogonal. The inner product in L was represented by P with

respect to the old bases. With respect to the new bases it is represented by

TPA o o

P’= o ATPAO

0 0 BTPB

C – 19



— C.2.6 —

The reproducing kernel is represented by

QI = (p1)I

Consequently

Q12

Note also the validity of the error propagation law:

= S2, Zf2’) = SZ(2)ST () =

2.5. Orthonornializing the bases of the subspaces.

Let V be a vector space1 let e11. . . ,e be a basis, and let the positive definite

niatrix G represent the inner product. As outlined in section A.4.7., a set of

orthonormal vectors e1,. ..,e’ may be derived. If these vectors are chosen as

new basis vectors, the coordinates of vectors transform as

x = Rx’

(The earlier notation used in section A.3.2., paragraph (6) was xoLDAxNEw.)

The inner product with respect to the new basis is represented by the identity

matrix

= I
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We see that G is represented as

= RTR

Remark: There is a very old, very practical and well— known procedure to compute

the matrix G. It is the method by Cholesky. R is the Cholesky— factor of G. R is

an upper triangular matrix fcf. section D.3.).

The inner products in our 3 subspaces L, L, LB are represented by

AL PAL

= BTPB

We factorize these matrices as

T

I
- R2 R2

T
3_ 3 3

We accordingly transform the observations by

=

0 II 0 I

Z2 ‘2 2

2 —3 -

R3 3
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Shortly

II Sill

Our adjustment problem transforms into

= R1y1 I 0 0

= R2z2 = 0 I 0

= 0 13 0 0

Remark: The described transformations imply an alternative form of the final

stage given by

E(21) R1y1

R2z2

E(3lt) 0

with Ytl”) as given above.

The solution is

y1 R1121”, v1” 0

z2 = R2122t1, v21’ 0

II
— _

II
Y3

—

13
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The covariances of the various quantities are

—I —1 T 2 T —I 2 —1 2
y1 = a = R1 R1 a = a

T —1 2R2R2 a

= I a2

Because a change of basis in L amounts to an isometric transformation (cf.

section A.8.4.2.), we have

11v112 v’Pv 11v3”112 fl13”112
f211)T211

Because y1=x, we see that y1 is the BLUE for the functionals On the other

hand, the BLUE for x can also be obtained conventionally by adjusting for the

x’s directly

x = (A’PA)’ ATpP

with

(x) (ATPA)I a2

and

yl =

with

= Zfx) = f ATPA) lT a2
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Thus we see

Gll =

This formula will help us to utilize the insight gained through canonical

transformation without actually performing this transformations in practical

calculations.
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3. Distribution of various quantities resulting from a least squares

4justment.

3.1. The joint distribution of BLUE’S and of the residuals.

We now make the decisive assumption that the observations 1 are normally

distributed. Thus the vector 2 is assumed to have an n— dimensional Gauss

distribution with mean E(2)1,=Ax and covariance matrix f2)Q2.

We see that the mean is specified in terms of m unknown parameters x. The

covariance may also have an unknown parameter, namely . However, may also

be assumed to be known.

The best estimates of functionals 4x are given by

= = (A’PA)’A’P2

The residuals are given by

v = -(i - A(ATPA)ATP) 2

as well as v ate linear functions of the observation 2. Hence they are also

normally distributed (cf. section 1.2., paragraph (2)). In order to specify

their multidimensional normal distribution, it suffices to specify the vector of

expectations and the covariance matrix. Because the are BLUE’s we have

E() = =
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This may also be verified directly. On the other hand

E(v) 0

as one recognizes by applying the E— operator to the above expressions for v and

by recalling Ef2)Ax.

A straightforward application of the error propagation law (for covariances)

yields:

fATPA)_l 0

v 0 Q—AfA’PA)’A’

It is seen that the BLUE’s and the residuals v are uncorrelated and, since

we deal with normal distributions, stochastically independent.

3.2. Distribution of the “weighted sum of residuals”.

The quantity

vTPv

is the quantity which is minimized during least squares adjustment. Its

distribution will now be specified.

Theorem: The quantity

C – 26



— C.3.3 —

vpv pvv
iI ]I

has a x2ri— distribution, i.e. a z2— distribution with n—rn degrees of freedom.

Remark: n is the number of observations, rn is the number of unknown parameters;

hence

n-rn

is the number of redundant observations.

Proof: We refer to section 2.5. There the equation

v’Pv) = fi1)T2c1

was listed. The vector 23” has n—rn components. The expectation of 23” is zero

(this is stated in remark within section 2.5.).

The covariance of 23” is t2. Hence the covariance of (1I)13” is I. It follows

that

I ,, T — I I,,
3 13 — V rV

is a sum of squares of n—rn independent random variables having a normalized

Gauss distribution. Thus the sum has the distribution. Confer the

definition of in section 1.3.
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3.3. Expressions in 4 and v having the or the F— distribution.

The following theorem is fundamental for statistical tests of linear hypotheses.

Theorem: Let Q be the BLUE for x, where is a p*in matrix. Denote

C =

Then

f-c) ffATPA)_t,T) f—c)

has a %2_ distribution with p degrees of freedom. Furthermore

F
— f$x—c)T (Ø(ATPA) t,T) 1 ($x—c)/p

p,n—m
— (vTPv)Jn—i

has an F— distribution with p and n—rn degrees of freedom.

Remark: The quantity c=x is unknown because the x are unknown. Hence and

Fpn_m involve the unknown quantity c. However the distribution of and

is known. In later sections hypothetical values for c will be specified,

and these hypotheses will be tested using the specified expressions and their

distributions.

Proof: In section 2.5. we have seen that
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=

E121”) = R1y1 R1x R1c

=

Hence

.1.... 1T [11’’—Ef1’’)1

is a sum of squares of p independent random variables (the components of

f1/d)[21”—E(21”)I), having the normalized Gauss distribution. By the definition

of the x2— distribution, the above expression is a x. Substituting for and

E(21”) we obtain

1. (1—1C)’ (R1—R;c) =

i (—c) R11R1 (—c)

In section 2.5. it was noted that

R1TR1 = f,fATPA)_tT)_t

This proves the assertion on

The assertion on Fpn_m is proved similarly by noting that fl!o’)[11”—Ef11”)I and

f1/d)23” represent p + n—tn random variables having the normalized Gauss

distribution.
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Hence

F
[11”-Ef11”)]’ [1;”-E(Ii”)JIp

p,n—m (luTtIi}iffl_m)

has the F— distribution with p and n—rn degrees of freedom. Recalling that

23i)T23iivTp makes the proof complete.

Theorem: (Alternative representation of the quantities x2, and F nm specified

in the previous theorem.) Let v be the residuals of the adjustment problem

D÷v Ax, Z(2) 0d2

Let v be the residuals of this adjustment problem augmented by p additional

constraints:

1÷v Ax,

C =

Here c is viewed as a vector of constants (the constraints may e.g. be used to

reduce the number of parameters). Then

(_c)T ffATPA) ) (—c) v’Pv
— vTpv

Hence

= L fvcTpvc_vTpv)

and
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- (v’Pv-v’Pv)fp

— (v Pv)f (n—rn)

are the same quantities as those listed in the preceding theorem.

Remark: The newly specified expressions for x and F nm are frequently easier

to calculate by means of available computer programs for least squares

adjustment.

Proof: Just note from the canonical transformation that

vTpv = (211)T211

Next we must show that

vcTpvc fII_Rc)T (1’Rc) +

This expression is verified by noting that the canonical transformation of the

modified problem is

II It —

R2z2 ,

3II+v3II 0

The obvious solution of this problem is
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Vi” = -(2 “-R1c)

z2 R2122, v2 = 0

— 1 II

3_ 3

Due to isometry we have vcTpvc(vul)Tvht. Thus

vcTpvc = f2hI..Rc)T f1”Rc) + f211)T211

and the proof is completed by plugging it into the proof at the preceding

theorem.

3.4. Expressions in and v having the t— distribution.

A random variable Fin_rn having the F— distribution with I and n—rn degrees of

freedom can be seen as the square of a random variable tn_rn having the t—

distribution with n—rn degrees of freedom. Hence the following theorem is very

closely related to the second assertion of the first theorem of the preceding

section. In the following theorem we assume p1, and we write x as

Theorem: Let ..4,Tx be a linear function of the unknowns and let be its

BLUE. Put

= c

Then

n-rn T(ATpA)-I fvTpv)/nrn

has the t— distribution with n—rn degrees of freedom.
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Proof: Replace in section 2 the quantity x by Tx everywhere. Then has only

one component. It follows that

E 1

is a Resubstituting for 2 and 2 gives the stated expression.
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4. Confidence regions.

4.1. Confidence intervals for one— dimensional Gauss variables.

Suppose that X has the one— dimensional Gauss distribution with unknown

expectation iE(X) and known standard deviation c(X). As described in section

1.1., a transformation is made whose effect is a replacement of X by a random

variable

having the normalized Gauss distribution. One specifies a certain probabiltiy

which is usually chosen close to 1. Values of ft=O.9, O.95, O.99 are common

choices. The probability ft is called confidence level. Using a table of the

normalized Gauss distribution, one determines k such that

p{—k S kj =

This is equivalent to

ni—k <-cktL

or

p{X—k X÷k} ft

It is seen that an interval has been specified whose boundaries are random

variables. The interval covers the unknown expectation with a prescribed

probability ft. The interval carries the name confidence interval.
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4.2. Application to the Gauss— Markoff model with known unit weight error.

Consider the familiar Gauss— Markoff model

Ef2) Ax, () p

Assume that is known. Hence sf2) is completely known. Consider a functional 0

and its BLUE

The distribution of is a Gauss distribution with unknown expectation

Ef) p0Tx

and with standard deviation

f) OT(ATPA)...I0

The previous subsection describes how to specify a confidence interval for 0:

Choose a confidence level , ask a table or a computer for k, and specify the

interval

— k oTfATpA)_bo + k T(ATpA)-lo

or
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D—kc()

It covers the unknown value with a probability .

A special choice is the j—th row of the unit matrix:

In this case

= Ix = xj

the j—th component of the vector of unknown parameters. It holds that

T(ATpA)—% 2

where q is the j—th diagonal element of the inverse normal equation matrix
‘ii

= fATPA)_t

The confidence interval is

or

x3 — k x x3 + k

— k() x3 + k()

Another special choice of cP S:
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(a1, ... , a)

i.e. the i—th row of the design matrix A. In this way, one can derive a

confidence interval for the i—th component Z1 of the vector

Ef2)

Remark: Nobody can prevent a person from specifying confidence intervals for a

multitude of functionals For example confidence intervals for all

parameters x1, i1,. ..,m and/or for all observables 11, i1,. ..,n could be

computed and displayed. One has to be careful not to interpret these confidence

intervals and their associated confidence levels in a wrong way. In order to

illustrate possible pitfalls, assume 2 confidence intervals, one for x1, the

first parameter, and one for x2, the second parameter. We then have

p{ — k(1) + kf1)}

— kf2) x2 ÷ k(2)} =

The meaning of these equations is the following one. Suppose that the process of

taking observations 1 and computing estimates is repeated N times, where N is

large. Then approximately in N cases the first confidence interval covers x1,

and also in N cases the second interval covers x2. It is however not clear in

how many cases both intervals cover appropriate values simultaneously. Thus the
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probability of the joint event

— k(1) ÷ k(1), 2 — k(2) +

is unknown. This probability would be if and were independent. It would

be , if they were completely dependent (i.e. if x2 were a function of

Generally and x2 are correlated. Hence the probability for the joint event is

somewhere between the specified limits. We shall see later how ellipsoidal

confidence regions can be specified which covet both x1 and x2 with a pre—

specified probability .

4.3. Studentization.

Consider now the Gauss— Markoff model

EU) Ax,

where is now assumed as unknown. If pTx is a functional, then its BLUE is

as before. The variance is
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It is unknown, because o is unknown. We ate used to estimate c by

...2
n-ni

The estimate for is unbiased. From section 3.2. we know that (/2)v’Pv is

a Hence E(vTPv)fn_m)2. Thus

We denote by the square root of (we cannot claim that Ef), but & appears

to be a reasonable estimate for o’).

We also denote

t6) fA’PA)

Thus &f) is an estimate for The crucial point is now that

n—rn

has Student’s t— distribution with n—rn degrees of freedom. The proof is given by

the theorem of section 3.4. Just mind that = that has been denoted

by c, and that the denominator of the expression in the theorem of section 3.4.

is nothing but
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We are now able to specify a confidence interval for . After prescribing c, one

uses a table of the t— distribution to find k such that

p{—k tn_rn kj

Thus

or

— k() ÷ kf)]

Thus a ramdom interval has been specified which covers the unknown value Tx

with a prespecified probability.

4.4. Confidence regions for

The quantity

r.—rn

was seen to be an unbiased estimator for

Further more, in section 3.2. it was seen that

2 T
Z n-rn - n-rn — -

has the 2_ distribution with n—rn degrees of freedom. Confidence regions for

may be constructed as follows.
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(1) Iwo— sided confidence interval. After specifying the confidence level ,

choose q and r such that

p{q > z2-J = p{Z2n-rn > tj

Then

p{q rj

p{qfn-qrj=

p{fn—in <
< (n—rn)

(2) One— sided confidence interval of finite size. Choose q such that

nfl <I, =r n—rn

Then

(n—rn)
2] =

(3) One— sided confidence interval of infinite size. Choose r such that

=

Then

(n—rn) =

The choice of a confidence interval of type (1), (2), (3) depends on the

situation. If one is suspicious against a which are either too srnall or too
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large, then (1) is chosen. If one is suspicious against 2 which are too large,

then (2) is chosen. Similarly for (3).

4.5. Ellipsoidal confidence regions for sets of linear estimates.

We consider a set of p linear functions

1’ =

together with their BLUE’s

=

The matrix is of size prn. From section 3.3. we know that

(x4x)T ((ATpA)_lI)_l f—4x)

= ()T
()_1 (4)

has the %2_ distribution with p degrees of freedom.

We also know that

($x_,x)T ,(ATpA)_I,T)_l (x—$x)Jp
Fpnm (vTpv)fn

(J_)T ()1 (4)/p
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has an F— distribution with p and n—rn degrees of freedom. In these formulas we

denote as usual

(ATPA)_tT 2 • covariance of cP

(vTpv)/fn_m . .
. estimate for

f) (ATPA)T 2 estimate for Zt)

The above formulae put us into the position to specify ellipsoidal confidence

regions when is either known or unknown.

(1) 2 known. Choose a confidence level , find k such that

kj

Then

p{f_)T f—ø) kj

The riatrix is known and positive definite.

If M is any p*p positive definite matrix then all points (position vectors) x

fulfilling

x0_x)T M fx0—x) = c0

are situated on a p— dimensional ellipsoid. The ellipsoid has its center at x6.

The directions of the axes are the directions of the eigenvectors of M. The
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lengths of the axes are given by the square roots of c0 divided by the

eigenvalues of M. The points x fulfilling

M fx0—x) C0

are situated in the interior and at the boundary of the above ellipsoid.

If we intetptete and as position vectors of points, we see that al] points

fulfilling

()T ZfY f—) k

are situated in the interior and at the boundary of a p— dimensional ellipsoid

centered at . Thus we have specified an ellipsoidal region which covers the

unknown p— dimensional point with a prespecified probability .

(2) unknown. Choose and k such that

kj

i.e.

p{()T (-)/p kj

Hence an ellipsoidal region has been specified covering the unknown point • in

p— dimensional space with prescribed probability.
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5. Tests of linear hypotheses.

5.1. Linear hypotheses.

We again start from the familiar Gauss— Markoff model for n observations and m

unknowns

E(2) Ax, (2) Q, P

The unit weight error may be known or unknown. A linear hypotheses is a system

of p linear equations of the form

= C

The vector c is comprised of p pre— specified constants. One could say that a

linear hypothesis assumes that p linear functionals 4x on LA (the space of

adjusted observations) have certain pre— specified values c. This assumption is

usually called the “null hypothesis”. The “alternative hypothesis” would be that

Px.c.

The usual procedure to test the null hypothesis is the following one. The BLUE

for x is an m— dimensional random variable. It has the multidimensional Gauss

distribution with (unknown) mean x and covatiance matrix I(). Zf) may be known

or unknown. In the latter case tx) is an estimate for ((A’PA)2,

Z=vTPv/n_mn). The in— dimensional space Rm of realizations of is divided into

two regions, a region of acceptance and a region of rejection. If the outcome of

is in the region of acceptance, the null hypothesis is accepted (with some
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reservations). If is in the region of rejection, the null hypothesis is

rejected (definitely).

As regions of acceptance the confidence intervals of chapter 4 may be used with

the roles of 4) and interchanged. The region of acceptance is thus an ellipsoid

centered at P=c. The region of rejection is the complementary region. It is seen

that a certain probability is associated with a test. 1— is the probability

of rejecting a true null hypothesis. In section 4 on confidence intervals, was

called “level of confidence”. Now we call 1— the “level of significance”.

Rejecting a true null hypothesis is called “error of the first kind”. The

probability of accepting a false hypothesis, i.e. the probability of an “error

of the second kind”, is more difficult to specify. It depends on “how wrong” the

null hypothesis is, i.e. it depends on cPx—c. If 4)x—c is small, then the

probability of an error of the second kind is neat , and is therefore quite

large. This is the reasonwy acceptance of the null hypothesis is done with some

reservation. A subsequent, larger sample could lead to rejection of an earlier

accepted hypothesis.

5.2. Tests of variances.

If is unknown, an estimate is available as

Tpv
d
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where is a pre— specified value. The

of the — distribution with n—in degrees

significance 1— which is small. Recall

section 4. As explained in section 4.4.,

null hypothesis

of freedom. One

that was called

one finds q and

can be tested by means

specifies a level of

confidence level in

r such that

The interval

p{q : (n—rn)
!2

r}

tn—in) r
0•0

q 2 2 ta 2or

is the region of acceptance. The complementary region is the region of

rejection.

Remark: If one is suspicious that i might have been specified as too small, one

is better advised to use a one sided region of acceptance. One finds r such

that

ptfn in) r =-J
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and uses the region of acceptance

2 2

5.3. A simple example.

A base line used for comparison measurements has a known

newly delivered distance meter gives values

E(2) I = f1) = t,2

length of 1.51.723 in. A

i1,. . .,20 listed in table 5.1.

The company specifies a standard deviation (root mean square error) of =5nim.

I vi104 i vi*I04

1 151.745 — 105 11 151.752 — 175
2 .743 — 85 12 .730 + 45
3 .728 + 65 13 .724 ÷ 105
4 .728 + 65 14 .71.1 + 235
5 .744 — 95 15 .745 — 105
6 .724 + 105 16 .732 — 35
7 .739 — 45 17 .730 + 45
8 .721 + 135 18 .733 + t5
9 .744 — 95 19 .738 — 35

10 .731 + 35 20 .742 — 75

Reading of a distance meter for a base line with known length of 151..723 m’s.

We first check the hypothesis d=5mnm. We perform an adjustment whose Gauss—

Markoff model is

Table 5.1

This is the model for direct observations of equal accuracy, the most elementary
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model of least squares adjustment.

The BLUE for x is the arithmetic mean

20
x = 1. 151.7345 In

iI

We calculate corrections (residuals) v. which are also shown in table 5.1.

One computes

I vTv -f- mni 103.95 mm2

= 10.2 mm

We are suspicious that has been specified to small. Hence we perform a one—

sided test as explained in the remark at the end of the previous subsection.

Under the null hypothesis 05mm the quantity

(n-m)
o

has a 2-distribution with n—m (=19) degrees of freedom. Taking 1—0.05, i.e.

=0.95, and using a table for the 2 distribution, we find

p{z219 30.1) 0.95

or

C – 51



— C..6 —

p(19 30.1} 0.95
U0

or

> 2]
= 0.05

The region of rejection is

30.1 ,.,..

or

1.26 = 6.29 mm

Our value o’=10.2mm is in the region of rejection. Thus the hypothesis is

rejected. We use 10.2mm instead of cr05mm in further tests.

Remark: Note that there is no reason to put all the blame on the company. It may

have been that the instrument was not used according to the specifications.

Our next null hypothesis concerns the measured length of the base line. We

postulate that

151.723 m = c

Thus the null— hypothesis assumes that the baseline has been measured without

any systematic error. We need information on the variance of . Because ci05mrn

has been rejected, we do not calculate
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= h 1.25 mm2

but we rather estimate

I 2 (lfJ 2)2 2 2fx) = = mm = 5.20 mm

or

2.3 mm

Under the null hypothesis the quantity

x—c

dCX)

whose observed value is

t51.7345 — 151.723
0.0023 5.0

has a t— distribution with 19 degrees of freedom. Confer sections 3.4. and 4.3.

Using a table for the t— distribution we find

p{-2.09 t19 2.09) = 0.95

It is seen that the null hypothesis is rejected.

The region of acceptance can also be displayed as
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151.723 — 2.09*0.0023 x 151.723 + 2.09*0.0023

151.7l8 in 151.7278

The value =151.7345!n is outside this range. We conclude that either the

instrument is wrong, or that the base line has changed its length, or that the

measurement was biased for some reason.

5.4. A sophisticated example.

It shall be tested whether a dam is subsiding as time goes on. After finishing

the construction of the dam the leveling network shown in fig.5.t was measured.

It will be called the time 1— network.

Fig. 5. 1 lime 1— network

S

The points 7,8,9 are situated on the dam. The other points 1,.. .,6 are located

on firm ground. The height of point 1 is assumed to be known.

1 2 3

h
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After the lapse of some time (one year maybe), new levelings were carried out.

The same instrument and rods were used, the same observer as well. Also

otherwise it was attempted to measure under the same conditions as they were

given during the first measurement. This justifies the assumption that the unit

weight error was the same for both time periods.

Not all height differences were releveled at the second time. The network for

the second measurement (i.e. the time 2— network) looked as shown in fig.5.2.

1 2 3

I —

5 6
4

Fig.5.2 Time 2— network

The null hypothesis postulates that the heights of points 7,8,9 did not change.

Rejection of the null hypothesis means that at least one height has changed.

The procedure for testing the null hypothesis goes on as follows. Both networks

are combined, whereby the points 7,8,9 are duplicated by considering points

7’,8’,9’ in addition. The unprimed points refer to time 1, the primed points

refer to time 2. The combined network looks as shown in fig.5.3.
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We have n=34 and m=1I, n—m=23. The vector of parameters x comprises the height

of the points 2,3,4,5,6,7,8,9,7’,8’,9’

(H2, H3, H4, H5, H6, H7, H8, H9, H7•, H8t, H91)T

— c.s.ie —

2

7

4 5 6

9,

Fig.5.3 Combined network

Note that the points 7 and 7’ should actually be drawn on top of each other.

However for ease of comparison we have shifted 7’ slightly away from 7. The

solid lines represent the measurements at time I, the dashed lines represent

those at time 2. The points 7,8,9 are only connected to measurements at tine 1,

the points 7’,8’,9’ only to those at time 2.

The combined network is now adjusted in agreement with the Gauss— Markoff model
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From the vector of 34 residuals we calculate

34
=

i1

We compute the estimate of the unit weight error

IT1T
— 34—11

— 123

The covariance of the adjusted heights is estimated as

f) (ATA)_l 2

The null hypothesis is the following linear hypothesis

H7 H71

H8 = H81

H9 H91

or

H7 — H71 = 0

H8 — H81

H9 — H91

or

o 0 0 0 0 1 0 0 —1 0 0 0

0 0 0 0 0 0 1 0 0—1 0 x 0

0 0 0 0 0 0 0 1 0 0—1 0
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This is denoted

c 0, i.e. c = 0

The best estiniates for x are

whereby comprises the adjusted heights

(2 H3, H4, H5, H6, H j j
,

fl, )T

Under the null hypothesis the quantity

F323 f)T f)I ()/3

with

f) (ATA)T 2

has the F— distribution with 3 and 23 degrees of freedom. Specifying a

significance level of 1—=0.05, and using a table for the F— distribution, one

finds

p{F323 3.03) = 0.95
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The region of acceptance is therefore given by

()T f) < 3 * 3.03

Remark:. The above outlined testing procedure requires the calculation of

ATA)_lT, which may not be easy if conventional software for least squares

adjustment is used. The second theorem of section 3.3. offers another

possibility to calculate F323. From the above adjustment of the combined

network one just notes vTv. The combined network is then adjusted a second time,

whereby the pairs of points (7,7’), (8,8’), (9,9’) are identified. This is

equivalent to an adjustment of

Ef2) Ax

l’x 0

with 0 as given above. The equations Ox 0 •are used to eliminate H71, H8,, H91,

so to speak.

Thus, during the second adjustment, one has only 8 parameters instead of 11.

These parameters are

H2, H3, H4, H5, H6, H7, H8, H9)T

From the residuals v of the second adjustment one calculates vcTvc.
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According to th2 second theorem of section 3.3., the quantity

I I
F

—
v v — v v 3

3,23
—

(T)f23

is the same as that one used in the earlier procedure.

Problem: Our null hypothesis was: “The heights of the points 7,8,9 did not

change”. The alternative hypothesis was therefore “At least one height changed”.

A change of height is either a decrease or an increase. One may wish to exclude

the possibility of increasing heights on a dam which is expected to subside.

Hence the null hypothesis could be formulated differently as follows: “The

heights of points 7,8,9 did not decrease”. Can you imagine a test procedure for

this modified null hypothesis?
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D. SPECIAL TOPICS

1. Adjustment of Doppler observations.

1.1. The Transit system.

This short subsection cannot replace any solid background information on the

Transit Doppler system. For more information the reader may consult e.g. D.E.

Wells (1974). (See the reference at the end of this chapter.)

The Navy—Navigation satellite system uses 5 satellites in polar orbits (as of

1979/01/01). Satellite altitude is about 1100 km. The orbital planes ate not

equally spaced due to deviations in precession. Any satellite broadcasts at two

stable harmonic frequencies of 150 MHz and 400 MHz. The ground station Doppler

receiver measures the amount by which these two stable frequencies have been

changed owing to the Doppler frequency shift caused by the relative velocity

between satellite and ground station.

Transit satellites also transmit a series of digital signals by impressing

digital phase modulations onto the carriers. The timing of these phase

modulations is controlled by the satellite time standard so that they can be

used as timing signals. The signals include parameters describing the satellite

orbit. (Broadcast ephemerides.)

The two different frequencies allow a correction for errors introduced by the

ionosphere. The influence of the troposphere is accounted for by a mathematical

model. We do not discuss any relevant details.
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There are 4 tracking stations in the United States responsible for monitoring

the satellite orbits. About 20 cooperating stations distributed all over the

globe contribute observations which are used to calculate and circulate (in a

somewhat restricted way) improved a—posteriori ephemerides, called “precise

ephemer ides”.

1.2. Observing a difference in light travel time.

x(f1)

Satellite and receiver are moving in inertial space. A geocentric coordinate

system with non—rotating axes can be considered as inertial to a sufficient

degree of accuracy. A signal emitted from the satellite at time t is received at

the ground—station at time

t= t÷

x(t)

satellite trajectory

receiver trajectory

SI

C
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r(t). arrival time of signal emitted at time t

s(t). distance traveled by light signal emitted at t and received at ‘r

c. .speed of light.

We occasionally also denote (somewhat inconsistently):

sfr). . .distance traveled by light signal received at time x. The signal was

emitted at time t = —

Considering two signals emitted at t11t2, we get

t- x) = tt2- t1) + si).

This equation immediately implies the following two relations between

differentials:

dr Ut ÷ —ds
C

This can be used in the following two ways:

Ut 1 Us

Ut c Ut

Ut c dr
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1.3. The frequency shift.

Assume now that N oscillation periodes ate emitted between t1 and t2. The

satellite frequency is then

N
$ t2—tl

The same N oscillation periods are received between t1 and x2. The averaged

receiver frequency is then

fr
t’2t

While f5 is constant, r is time varying. We see

_t2-t1

2L

In the limit

Ut 1 ds dr ‘ I Us —t
—

= 1÷——
f5 Ut c dt dt c Ut

Note that -- are not relative velocities of satellite and receiver. They are
dt Ut

time rates of change of the light travel distance of a signal emitted at t and

received at x = t +
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1.4. Technique of cycle counting.

At the receiver a frequency

fg fs ÷

is generated. Superposition with the received signal allows to observe the

slower cycles of the beat frequency

+
—

There are two basic alternatives

(I) The count is gated f i.e. initiated and terminated) by sate]lite time marks.

Beats between ‘r t1 and 2 2 are counted.

(2) The count is gated by receiver tine marks. Beats between x1 and r2 are

counted, whereby ‘r2 — x is a fixed tine interval.

The most common receivers are Magnavox, JMR and Marconi. Magnavox and Marconi

permit both modes. MR uses (I), however a comparison between satellite time and

receiver time takes p]ace.

Corresponding to modes (2) and (1) we get two versions of the subsequent

equation
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Dzf rb dtf ff ÷f) dt—

= ft2
-

+ f) - I f
‘ri

$+ 1)
I C

2
I f Ut

C

ids
(1 — ——) Ut =

cdt

(2)

(1)

The fly—by of a satellite allowing uninterrupted observation of its frequency

is called a “pass”. The duration of a pass is about 20 minutes. During a pass

many counts may be observed. The typical duration of a count is between 4.6

seconds and 2 minutes. (This is x2 ; it is fixed in case of mode (2), and

(slightly) variable in case of mode (1).)

1.5. Parameters accounting for receiver imperfections.

The parameters depend on the type of equipment. In particular they depend on the

two alternative ways to gate the Doppler counts.

In case of mode f 1), i.e. satellite gated counts, the socalled delay of time

mark reception is important. Time marks are realized by phase modulations of

carrier frequency. They are processed by different circuits and delayed much

stronger than the carrier signal itself. There is a constant delay communicated

the

fs
D ft2 -t1) ÷ I)C

fs
÷ -ii— 2 — s1) =

f
D = ft2 - t1) f + - s1)
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by the manufacturer. It is about 500—1000 s. Superimposed is a variable part of

±30 s. It is usually modelled by a pass internal parameter.

The delay of time mark reception causes the integration to start at t+ A and to

end at ‘r2+ A. Without delay, the starting and ending times would be t and r2.

The effect on the observation equation Cl) is visible only if arguments of s1

and s2 are revealed. We have

f
D (t2÷A- t1-A) Af + {sft2+A) -

C

Not taking A into account would mean that wrong satellite positions are used,

namely positions at t1, t2 instead of positions at t1÷ A, t2+ A.

If a receiver clock is used to gate the counts, a receiver clock offset has a

similar effect.

Another receiver error is given if the receivers reference frequency is

imperfect. Instead of its nominal value fg Af the receiver frequency may

be given by the following expression:

f9 + fg +

The error splits into a constant part and a drift rate. Both may be introduced

as parameters into the observation equation. Reference frequency errors effect

the above equations fl),(2).
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Let us see what happens in case of equation (I), i.e. in case of satellite gated

counts. Assume d’f9 0. The beat frequency is

=
÷ —

Since ‘r1 and t2 are not falsified if gating is prompted by satellite time marks

we have

D

This leads us to equation (1) with f9 replaced by fg + Sfg

D (t2 - t1) (fg - f5 + fg) + (fg + fg)fS2 - s1) (I’)

1.6. Transformation into an earth—fixed frame.

The rotation of the earth is described by the following rotation matrix

cos ,t —sin r1t ol
Uft) sin t cos wt 0

0 0 1
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We write

Utr)

x(t) Ut t) ft)

.station position in inertial frame

.station position in earth—fixed frame

x(t) satellite position in inertial frame

ft). . .satellite position in earth—fixed frame.

We have

sft) = llx(t — ) fr)II

ilUft - - - Uft) II =

hUt- ) f - - hI

= hIft - - U() hI

(Mind Uft1+ t2) Utt1)Uft2), Uf-t) U’(t) = UTtt))

The above equation could also be written as

sft) = hItt) - U() h1

(Recall the somewhat inconsistent notation s(t) sfx)).
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1.7. Parameters accounting for orbit corrections.

The following information on satellite orbits is available:

Broadcast ephemerides. They are transmitted by the satellites at 2 minutes

intervals. They are based on a 36 hours period of observations at 4 tracking

stations in the USA.

They are injected (uploaded, transmitted to satellites) at 12 hours intervals.

Their errors may amount to 20—30 meters.

Precise ephemerides. They are post—computed by NWL—DMA. Positions at I mm.

intervals are communicated to users. The precise ephemerides are based on 20

tracking stations distributed over the globe. Their er.rors are estrnated at 2—5

meters.

The orbit is represented in the computer by means of Chebyshev polynomials of

degree 7 to 9. (One could imagine that spline interpolation would do somewhat

better.) Corrective parameters to the orbits are assumed. Typical are 3

parameters accounting for deviation along track, across track and out of

(orbital) plane. The parameters are not allowed to vary freely. They are viewed

as pseudo observation with value zero and a prespecified variance. This

corresponds to a mixed adjustment model, combining elements of conventional

least squares adjustment with techniques of prediction and collocation.
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1.8. Linearization of the observation equations.

It is apparent from the previous discussion that the Doppler observation

equation may appear in various different shapes. In order to illustrate the

principle, we take the nonlinear equation in the form (1’) corresponding to

satellite gated counts:

D ft2t;)(fg - f fg) ÷ ffg + fg)[S(t2+ A) - sft1÷ )]

It is seen that we assume a receiver delay A and a receiver frequency bias ‘fg.

We also assume orbital parameters. We denote the along—track, across—track and

out—of-plane errors by a, b, c, respectively.

In agreement with section 1.6 we represent

s(t+A) IIft÷A) — U()II

We assume that Xft) is the ephemeris satellite locus in the earth fixed frame.

We also introduce unit vectors Aft)1 8(t), C(t) pointing into the tangential,

(i.e along-track), the across—track and into the out-of-plane direction of the

orbit. We introduce vft), the scalar satellite velocity. The vectors Aft), 8(t),

Cft), and the scalar v(t) may be derived from the ephemeris. The satellite

position at time t + A is then given by

ft+A) = Xtt+A) + At t)a ÷ Bft)b ÷ Cf t)c
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Thus we have

s(t+A) I!Xft÷A) + A(t)a ÷ Btt)b + C(t)c - U(ll

The quantities A, a, b, c, are small. Although s is unknown, a known

approximate value may be used in . We also represent the station coordinate

vector dS

fO) +

Here are approximate known values. Now comes the familiar linearization

procedure. One gets to a sufficient degree of accuracy:

I — 0

Uf)= 1 0

0 0 1

Hence

- (O) + -

+
+

(O)
+

Introducing the direction cosines 1ft), 2ft), cf3Ct) from t0) to ft. one gets
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sft+M NXft) - tO)Ii +

+ 1(t) {A1ft)(vft)A÷a) + B1ft)b ÷ C1ft)c - A÷

+ 2tt) {A2(t)(vft)+a) + B2ft)b ÷ C2(t)c
- 2

(O))

+ 3tt) {A3(t)fvft)÷a) ÷ B3tt)b ÷ C3ft)c -

We abbreviate this as

sft+A) IIXft) -
0)Ii ÷ k0ft) ÷ kA(t)A + ka(t)a ÷ kbtt)b + kft)c +

+ k_ A ÷ k_ + k_
1 2 3

Here we have put

k0tt) f1ft)° — 2ft)°) w

As mentioned above, in the small corrective term w an approximate known value

for s may be inserted.

We have thus linearized the worst term occurring in the Doppler observation

equation.

We use the abbreviation

rft) IIX(t) - II

D – 13



and obtain

D.J.14 -

f
D = ft2- ti)tfg ÷ {rt

+ Cft2- t1) + [rft2) -

f

+ E {(kA(t2) — kAfti))

÷ fkaft2) — kafti))

+ fkbft2) — kbftl))

÷ fkft2) — kft1))

+ fk_ (t ) - k_ ft2 1

+ fk- ft2) - k- ft1

+ fk— ft2) — k_ ft1

t2 ) — rft1 ) + k0ft2 ) — k0 ft1 )J

rft1)]1 J’fg

A

a

b

C

))

)) A3}

Remark: Because the effect of an along track error and a time delay are nearly

equal, the two parameters a and A are practically inseparable. The normal

equations are near singular unless a—priori pseudo observations for either a or

A, or both, are faked. The pseudo observations have a value of zero, and a

certain weight is given to them.

The typical structure of a Doppler observation equation is

T I I—
f +v0 =Ae+Ao÷A’

Here Ae refers to Afg, A, and, in general, to parameters resulting from receiver

imperfections. Ao refers to a, b, c and, in general, to parameters resulting

from orbit corrections. A refers to station coordinate increments. 1 stands for
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the difference of D and the constant terms in the above equation. Newly

introduced is VD, the correction to D.

1.9. Single station ad1ustment.

At a single station a large number of satellite passes is observed. Any pass

gives many observations, i.e. integrated Doppler counts D over short periods of

time. (Typically, a pass lasts 20 minutes, while the periods for Doppler counts

are 4.6 seconds to 2 minutes.)

A suitable adjustment model is one of phased observations. Any pass gives rise

to a phase. Common parameters are the station coordinates. Pass—internal

parameters are all others, i.e. parameters due to short periodic receiver

imperfections and parameters for orbit corrections. Sometimes also

meteorological parameters are included.

Precise ephemerides are almost obligatory in order to get meaningful results for

single station positioning.

1.10. Multi—station adjustment.

If a satellite is co—observed during a pass from several stations, meaningful

results can be obtained also on the basis of broadcast ephemerides. The reason

is that orbit uncertainties affect all station locations in nearly the same way,

causing, so to speak, a common translation and rotation of the co—observing

stations. This mode of observations is sometimes called translocation. It may

give reasonably good relative position vectors.
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For a group of co—observing stations a phased approach may be used again. Common

parameters are the station coordinates. Pass—internal parameters are the orbital

corrections as before, the corrective parameters for the receivers, however,

multiply. There are as many sets of receiver parameters as passes are observed

by individual receivers.

A set of partially reduced normal equations is obtained for a group of

co—observing stations. Other groups of stations may be treated similarly. There

may be and should be overlaps between the groups. The partially reduced normals

of the groups are added and a set of normals for all participating stations is

finally obtained and solved.
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2. Ceodetic data bases.

2.1. Storage media.

The central memory of a computer allows very rapid processing of data. Searches

through tables, matching of data, computations, can be done very fast once the

data are in central memory. Data can be accessed there in fractions of 1O

seconds. Central memory is expensive, hence its size is limited. Microcomputers

or desktop computers may offer about 32 * to 128 * 1O bytes of central

memory. One byte contains 8 bits of information and is usually taken to encode

one digit, one alphabetic character or one special symbol. On microcomputers we

may have four times as much. On large computers, 4 106 to 8 * 106 bytes of

central memory may be available.

None of these numbers is sufficient to store the data associated with a ]arge

network, nor is it desirable to do this. Data should be in central memory if

they are being processed. Otherwise they reside on secondary storage such as

disks or tapes. Tapes allow the sequential storage of data. A few multiples of

bytes may be put on a single tee] of tape. Data on tapes can only be acces

sed sequentially. This makes tapes useless for many applications. However, se

quential reading of data from a tape into central memory is fast, typically at a

rate of a few 10 bytes per second. Tapes offer a very cheap way to store infor—

mati on.

Disks are most suitable for data bases where data must be accessed instantly.

The amount of data which can be stored on the disks of one single disk drive is

comparable to that of a tape. (3 * 108 bytes may be stored on some disk drives.)
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One may imagine that data are stored on disks in sections. Sequential reading of

a section is fast. However, locating the beginning of a new section may require

one millisecond to 1/10 of a second.

It is not necessary to acquire a much deeper understanding of computer hardware.

The few pieces of information given above shall serve to create a feeling for

the difficulties encountered during the design of a data base.

2.2. Requirements for geodetic data bases.

The requirements depend on the type of application. We consider two applica

tions, namely

(1) a data base for the automatically recorded observations of a field project

(2) a data base for a large national network

Let us first discuss In

both cases, information are

stored in a structur of

certain data, e.g. poi e.g.

point numbers. There wi data,.

allowing e.g. quick In a

the common features of these two types of data bases.

on points and on observations is stored. These data

ed way. There will be indexes serving the rapid access

nt coordinates, according to specified key values,

11 also be cross references (pointers) between the

access to all observations taken at a certain point.

be desirable to find all observations whose fore—

the station under consideration.

different situation, it may

point (i.e. target point) is
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All situations requiring a linkage of the data must be foreseen when the data

base is designed. If unexpected situations arise later on, there is frequently

no other way than performing an exhausting (and expensive) search through the

entire data base.

The most convenient type of linkage of data is that one of contiguous locations

on segments of external storage. Recall that segments of disk storage can be

loaded into central memory very quickly. One can imagine that such segments hold

points which are located in a certain area. If one point is needed in that area,

it is very likely that other points in the vicinity are needed, too. One can

also imagine that all observations taken at a certain station are located in one

physical segment of external storage.

Unfortunately, it is not possible to realize all types of linkages between data

in the convenient way of placing them together. If observations for one stand

point are located together, then the observations having one and the same target

point are scattered over various segments.

Let us now briefly elaborate on the differences between the two types of data

bases. The purpose of data base (1) is the calculation of coordinates from re

dundant observations. Quick access to all types of data is necessary. On the

other hand, the total amount of data is not large, usually less than lO bytes.

Such data can be accommodated on minidisks or diskettes of small desktop compu

ters. Many computer manufacturers offer general purpose data base software that

can be used. A self—made solution can be faster and more economical. Such a
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system is described in Bartelrne, Hofmann—Wellenhof, and Meissi (198U.

Not all data stored on a data base of type (2), i.e. one for a large national

network, must be accessed instantly. It may be convenient to get point coordina

tes quickly. It is also useful to get quick information about the connectivity

of points and about the availability of data in a certain region. Hence only a

small portion of data should be stored on disk. The mass of observational data,

of station descriptions and of historical data can be put onto magnetic tape. It

will be sufficient to answer requests for such data within a few days. In the

subsequent section we briefly describe the data base that has been established

at the U.S. National Geodetic Survey.

2.3. The data base of NGS. [cf. Schwarz (1975)].

As part of the activity related to the readjustment of the North American net

work, NGS is placing all its horizontal positions, observations and descriptions

into a data base. The storage of data is station—oriented. For any station, the

following types of information are stored:

Position, and, if needed, elevation

Terrestrial observations taken at this station

Descriptions

Doppler observations

Astronomical observations

Cross references

Historical data
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For one station, all these data occupy contiguous portions on magnetic tape.

For the purpose of station numbering, the area of the U.S. is subdivided into

quadrangles of 30 latitude times 30’ longitude. In areas of dense control, a

further subdivision into 15’ * 15’ quads, and even into 7.5’ * 7.5’ quads, may

occur. Any quad is identified by a quad identifier tOlD). Within a quad, any

station carries a quad sequence number tQSN). Thus the concatenation of OlD and

QSN uniquely identifies a station. The numbering system automatically implies a

grouping of stations according to geographical regions. The details are ex

plained by fig. 2.1.

The data base can be accessed

inenues to the user, allowing

base, and to submit batch jobs

illustrate the separation into

records.

by means of a query language. Ih

him to quickly access the index

for detailed investigations.

an index part and a part

is language offers

part of the data

Figures 2.2, 2.3

with the detailed
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of saE ions
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I nd cator
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QSN = quad station number
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2.1Fig
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Fig. 2.2. Data stored on disk.

OSN data OSN data

‘V
Header tposL observ.[ tdescr. tDoppt. tAsro. Xref Hhis.d.

I I I I

Positions Observ. Descr. Asro. Xref His’cor.d.
f.I. v.1. v.1. v.1. v.1. v.1.

f. I.
V.1.

• . fixed Iengh
• . . variable Iengh

Fig. 2.3. Data stored on tape.
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3. Cholesky’s a]gorithm applied to the normal equations of geodetic networks.

3.1 Cholesky’s algorithm for a general symmetric positive definite system.

Suppose that the system is written in matrix form as

Ax =b

Cholesky’s algorithm relies on a decomposition of the positive definite matrix A

as

A RTR

where R is an upper triangular matrix. During the first or so—called “triangular

decomposition phase” of the algorithm, the system is, in effect, multiplied by

fRT). The result is the following triangular system:

Rxs

with

S = (RTYb

During the second or “back—substitution phase” of Cholesky’s algorithm, the

triangular system is solved for x recursively, starting with the last component

of x and proceeding to the first.

The details of Cholesky’s algorithm can be best described by switching to

indices notation. The original system then reads
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ax b1, I = 1,

The triangularized system is

Ji
= I = 1, ...

which is calculated from the original system by

1t 2 ff2
r = ( aj — r )

= ( a - rkrk )/r, j = 1+1, ... ,n I = I, ...

b — rksk )/r1

During the back substitution phase, the triangular system is solved by

x = ( Si rijx )/r11, I = n, ...

3.2 Partial reduction by Cholesky’s algorithm.

Split the original system as

A11x1 + A12x2 = b1

A21x1 + A22x2 = b2
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Split R accordingly:

R12

0

From the equation RTRtA we deduce the following identities

RT —— A11

I —R11 R12 A12

RT T —

12 R12 ÷ R22 R22 — A22

Multiply the first set of the original normals by (R1IY’ and then eliminate the

unknowns x1 from the second set by subtracting proper multiples of the equations

of the first set, the multiplying matrix factor being A21R1t=RJ. The resultin.g

system is

+

(p)
— k()

“22 2
—

LJ2

The second set of these equations is called the “partially reduced” set of

normal equations. Explicit and equivalent expressions for the quantities

involved are

D – 29



- D3.4 -

rIr _r t

- ‘22 — tI21t12
—

r222
- 22 ‘2V1I’12

= b2 - RJs1 b2 - A21Ab1

These expressions are easily checked by the identities exhibited above. The last

expression in any of the two lines reveals that the reduced normal equations do

not depend in any way on the peculiarities of Cholesky’s algorithm. In fact, any

method of elimination that removes the unknowns x1 from the second set by

subtracting proper multiples of the first set must uniquely arrive at the

partially reduced normals exhibited above.

In indices notation, the partial Cholesky reduction is

‘ 2 1/2
tj ( aj

— J1 rkl )

r1 = ( a - rk1rkJ )/r, j = i÷1, ... ,n 1 1,
...

= f b. — rkys )/r

a1 - E rkrkJ, j = i+l, ... ,fl

i p+l,

p(p) — —

Cholesky’s algorithm can be organized in many different ways. The programs used

by the NGS, writen by RH. Hanson and based on earlier work of Poder and
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Tscherning (1973) at the Danish Geodetic Institut, execute Cholesky’s algorithm

in the following manner;

FOR j1 TO n÷1 c..

FOR i1 TO MIN(n,j)

SUM=O ...

FOR k=I 10 MIN(p,i—I)

SUM = SUM + Atk,i)*A(k,j)

NEXT k

Afi,j) = Afi,j) — SUM

IF fiMINCj—1,p)) A(i,j) = Ati,j)/A(i,i)

NEXT I

IF tjp) A(j,j) = SQRICAtJ,j))

NEXT j

In this algorithm, the Afi,j) are place holders. They denote storage locations

for a number of quantities. In detail,

the original coefficients are stored at A(i,j);

the original coefficients b are stored at A(i,n+1);

* the are stored at A(i,j), the bi at AfI,n+1);

* the r1 are stored at Mi,j), the s1 at A(i,n÷1).

It should be stressed that the above algorithm is still a simplification of the

actual NGS programs. First, these programs make use of a more complicated data
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structure which allows storage and retrieval of coefficients A(i,j) columnwise

to and from mass storage (disks). Second, the programs allow for exploiting the

sparsity of the normal equations to some extent. The normals have many zero

coefficients. If the equatiofts are ordered in a sensitive way, many of the zeros

are retained throughout the reduction. This results in a great saving of

computer storage und computation time. The NGS programs store only a section of

each column, excluding coefficients that will never become nonzero during the

execution of the algorithm. We shall come back to the problem of ordering in

section 3.5.

We briefly mention another way to execute Cholesky’

to a series of partial reductions for p proceeding

Cholesky’s algorithm becomes very similar to gauss’

and b1°=b1. We then have

—

LIZ

pp pp 1

= aUir, j = p÷i, ... ,n

sp
= bP/r p = 1, ...

— r •r
13 13 P1 P3

Remark:

amounts

fashion

tO)_ a1j

s algorithm, which

from I to n. In this

algorithm. Denote

)= b11 —

i = p+l,

= i,

in

]
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If the algorithm stops at any p<n, a partially reduced system results. It adds

insight into the problem of equation ordering, discussed later in this section,

that any equation is modified by either dividing it by the square toot of the

diagonal element or by subtracting proper multiples of preceding equations.

Remark. Common to all versions of Cholesky’s algorithm is that they operate only

on the portion above and including the main diagonal of the matrix A, as well as

on the right—hand side. Hence only the upper triangular portion of the matrix A

needs to be stored in computer memory. Substantially more storage is saved if

the sparse structure of A is exploited, which is typical for matrices associated

with network problems.

3.3 Geodetic normal equations.

Our system of normal equations results from a geodetic ground control network.

Adjustment is done on a spheroidal rotational ellipsoid. We assume that the

reader is familiar with the principles of network adjustment. Our outline will

mainly serve to point out peculiarities and to specify the terminology and

notation used in the sequel.

The network will be adjusted by variation of parameters. The parameters, or

unknowns, are the ellipsoidal coordinates of the stations fpoints,nodes). Any

station has two parameters, namely ellipsoidal latitude and longitude. The

so—called orientation unknowns of direction bundles will be eliminated before

the normal equations are assembled and will not appear in the final set of
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equations.

Approximate coordinates must be known a priori. Denote these coordinates by the

vector ()• The observations 2, comprising distances, azimuths, bundles of

directions, and Doppler posiotions, will not fit the approximate coordinates.

There will be discrepancies M, i.e. only the set of observations 2—Al will fit

the approximate coordinates. An adjustment applies corrections v to the

observations, so that they become the corrected observations li-v. It also

applies shifts Ap to the approximate coordinates so that they become the

adjusted coordinates p=pt0+Ap. The functional relation between the corrected

observations and the adjusted coordinates is (after elimination of the

orientation unknowns) in linearized form written as:

Al + v = B Ap

Weights are prescribed for the individual observations. They are arranged along

the diagonal of the weight matrix P which has zero off—diagonal coefficients.

Gauss’ minimum principles, i.e.,

vTp Minimum

is used to uniquely determine v and Ap satisfying the side constraints Al÷vBAp.

The extremum problem leads to the normal equations

BTpBAP = gTp9
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which for brevity are written as

Ax=b

Note that the unknowns x ate actually small shifts leading from the approximate

coordinates to the adjusted coordinates.

An important feature of geodetic network adjustment is the local nature of the

observations. Any observation involves only a small number of stations which are

located close together. For distance and direction observations, direct

visibility between two stations must be given. This limits the spacings between

stations connected by such a line of vision to 30 km or less in most cases. The

normal equation matrix will have only nonzero off—diagonal elements a1.O, if

i,j refer either to the two coordinates of one station or to coordinates of two

stations Donnected by a measurement. Such a connection is established either by

a direction, a distance, or an azimuth between the two stations, or is due to

the preelimination of the orientation unknowns in case of a directional

co—observation of the two stations from a third station. The Doppler position

observations refer to the two coordinates of one station and will not cause any

a1, i*j, to be nonzero. While the network covers a large portion of a continent

and extends over several thousands of kilometers, there will only be nonzero

coefficients a1 if the involved stations are not farther apart than 60km fin

most cases).
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Remark. In the literature on numerical linear algebra it is frequently argued

that formation and solution of a normal equation system is not a good procedure

for doing a least squares adjustment. Instead one should go along with the

observation equation system, subjecting it to orthogonalization, singular value

decomposition, or other procedures. The argument is based on the condition

number of a matrix. The condition number of the normal equation matrix is

inferior to that of the observation equations. This is certainly true. On the

other hand, it has been proven that storage requirement and computational labor

is much less for a geodetic network if it is adjusted by the direct solution of

a normal equation system as compared to any other procedure. Refer to the

discussion in Avila et a]. f1978,p.16). Singular value decomposition or

orthogonalization appears to be very efficient for moderately large linear

systems that are very ill—conditioned. In the case of very large sparse geodetic

network systems which are not extremely ill—conditioned, storage requirement and

computational labor are the decisive criteria for selecting a solution method.

The observation equation matrix for the U.S. network is of size

3,000,000 x 350,000. To my knowledge no technique is known that preserves

sparsity during orthogonalization or singular value decomposition as efficiently

as that method which applies direct elimination to the normal equation system,

as will be shown later in tMs chapter.

3.4 geodetic interpretation of the partial Cholesky—reduced system.

The geodetic meaning of the quantities appearing in the system that has

undergone a partial reduction by Cholesky’s method is perhaps best understood in
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terms of a parameter transformation.’ The original normals are written as

+ A12x2 = b1

A2tx1 ÷ A22x2 = b2

and consider a parameter transformation which changes x1 into y1 leaving x2

unchanged:

y1 R11x1 +

12 X2

The inverse transformation is

x1 = R11y1 -

x2= x2

The normal equations for the new parameters are

yl

If we substitute for y1, we get

R11x1 + R12x2 =

=
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This is precisely what we get after partial

hidden behind these equations is the system

x2. This system completely decomposes into

It follows that the adjusted values for y1,

covariance matrix for x2 will be

fx2)

Chalesky reduction. We see that

of normal equations involving y1,

two separate systems for t and x2.

x2 will be uncotrelated. The

Let us go back to the original normal equations:

Axb

If a certain subset of the components of x are forced to fixed values, which

amounts to fixing the corresponding coordinates at the values p÷x, then the

normal equations for the remaining unknowns are obtained as follows: Noting that

any equation belongs to a certain coordinate, disregard all equations belonging

to the fixed components. In the remaining equations, insert the prescribed

values for the x’s to be fixed, and move these terms toward the right. The

desired system results. Note that the same procedure may be applied to the

partially reduced Cholesky system

+ R12x2 =

D – 38



- D.3.13 —

provided that the fixing is restricted to coordinates out of set x2. This

observation allows us to give the coefficients s, bi the

following geodetic interpretation.

* i>p, is the reciprocal of the variance of coordinate i, povided that

the coordinates k, p<kn, k.i are fixed, while the coordinates k, 1kp, as well

as coordinate i itse]f, are allowed to vary freely.

* i,j>p, i*j is the shift, with respect to the adjusted position,

suffered by coordinate i if coordinate j is displaced by one unit from the

adjusted position, and if coordinates k, p<kn, k*i,j are fixed to their

adjusted position, whi]e coordinates k, kkp as well as coordinate i itself,

are allowed to vary freely.

* b/ay, i>p is the shift, with respect to the approximate position,

suffered by coordinate I if coordinates k, p<kn, k.i are fixed to their

approximate positions, while coordinates k, lkp, as well as coordinate i

itself, are allowed to vary freely.

rj, p, is the standard deviation of coordinate i, if coordinates k, i<kn,

are fixed, while coordinates k, kki are allowed to vary freely.

—r/r11 , p, j>i is the shift, with respect to the adjusted position,

suffered by coordinate i , provided that coordinate j is displaced by one unit

from its adjusted position, that coordinates k, i<kn, k*j are fixed to their

adjusted positions while coordinates k, kki are allowed to vary freely.

* s1/r1, ip is the shift, with respect to the approximate position, suffered

by coordinate i, provided that coordinate k, i<kn are fixed to their

approximate positions, while coordinates k, kki can vary freely.
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The last three statements require an additional argument because coordinates k,

kp are also held fixed, while earlier we said that fixing is restricted to the

second set of unknowns, i.e., those with k>p.

The three last statements should be clear if we set ip, because then only

coordinates k>p are fixed. On the other hand, the c1s are no longer subject to

any change, as p moves on from i to higher values. Hence the argument also

applies for i<p.

Remark. (Elastostatic interpretation of normal equations before and after

partial reduction.) To the structural engineer the normal equations Ax=b appear

as equilibrium equations of an elastic system. The matrix A is called the

stiffness matrix, x are coordinate shifts of the nodes, and b are external

forces acting at the nodes. The coefficients of the stiffness matrix have the

following physical meaning: Suppose that the system is in equilibrium with x0,

b0. Displace coordinate j by one unit from its equilibrium position, keeping

all other coordinates fixed to their equilibrium position. An elastic force will

then be acting on coordinate i. This force is precisely a1. This holds also for

ij. The partially reduced normals refer to a so—called statically

reduced system. is still a stiffness matrix. p<i, jn is the force

acting in coordinate i when coordinate j is displaced by one unit from its

equilibrium position, when coordinates k, p<kn are fixed, while coordinates k,

kkn are allowed to adjust freely. The tight—hand coefficients have the

meaning of forces. The original b1=b0 are nodal forces due to inconsistencies
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in the network. As nodes are freed during elimination, different forces

ied to the remaining nodes such that the equilibrium position of the

des remains the same. The forces of the eliminated nodes must be

to the unelirninated ones. Occasionally it is also advantageous to

ernal forces. If the vector b is chosen as the j—th column of the

the solution x of the system becomes the j—th column f, of the

the stiffness matrix A. Hence f is the shift of coordinate i if a

s applied to coordinate j. Thereby it is assumed that prior to

of the unit force a free equilibrium state had been reached. In

particular, is the shift of coordinate i with respect to its adjusted

position, if (after adjustment) a unit force is applied to coordinate i. A more

lucid interpretation of the variance f11 of the adjusted coordinate i can hardly

be given. The elastostatic interpretation is thus somewhat simpler and of great

physical significance. I pesonally prefer to think in terms of elastostatics,

where the themselves have a most simple interpretation, whereas in

geodetic reasoning the ratios are most easily

understood. However, since this publication is addressed to the geodesist,

elastostatic language will very rarely be used in the sequel. For further

details the reader is referred to Rubinstein and Rosen (1970).

Remark. (On the near vanishing of row sums.) Another property of geodetic normal

equations is concerned with the row sums

n
13

must be appi

remaining no

transported

consider ext

unit matrix,

inverse F of

unit force i

application
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of the original as well as the partially reduced normals. If i is a coordinate

whose station — call it P — is involved only in relative measurements, i.e. in

measurements other than absolute positioning by Doppler, then the above row sum

nearly vanishes for any p. The row sum vanishes precisely if the network is

plane. On the ellipsoid it vanishes only approximately. The proof, for the plane

network, goes back to the observational equations BxAl÷v. All observational

equations involving station P can be thought of as being formulated in terms of

differences of coordinate increments. This implies that the row sums pertaining

to the station P vanish. The property of station P’s vanishing row sums carries

over from the observational equations matrix B to the original normal equation

matrix A=BTPB. Note that station P’s normal equations can be formed by

considering only the observations that involve this station. If station P is

involved in a Doppler measurement, the row sum of equation i will not vanish,

even if the network is plane. However, since the Doppler observations have

weights much smaller than those of the relativ measurements (directions,

distances, azimuths), the row sum will be appreciably smaller than the larger

coefficients in the i—th row of A. Hence, we conclude that all row sums of the

normals are small. The remark at the end of section 3.2 tells us that Cholesky’s

algorithm is a successions of subtractions of multiples of rows from others.

Hence the property of near vanishing of row sums is retained throughout

reduction and carries over to the partially reduced normal equation matrix

Cp)
22
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3.5 Problem of station ordering.

Coordinate i is associated with row and column i of the normal equations.

Ordering the coordinates in a different way leads to a system of normal

equations with tows and columns simultaneously permuted, i.e., with diagonal

elements permuted rows and columns arranged accordingly. Mathematically, the two

systems are equivalent, numerically they are not. Widely recognized in recent

literature are the great differences in storage requirement and computation time

that result from different orderings and when algorithms are used that take into

account the sparseness of A.

In geodetic networks, nonzero off—diagonal elements result from observations

between stations rather than between coordinates. The problem of ordering the

unknowns becomes a problem of ordering the stations. The two coordinates of one

station will always be placed together.

We will refrain from giving a thorough discussion of ordering schemes currently

in fashion. We shall briefly review three ordering strategies. The first serves

as an introduction to the problem, the other two will be relevant to the

readjustment of the U.S. network.

3.5.1 Ordering for small bandwidth.

A supposed geodetic network is depicted in figure 3.1. The solid lines indicate

directions observed at both end points. Additional distances and azimuths

(measured along some of the solid lines) as well as some Doppler positional
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observations may be available. Recall that two stations are connected by nonzero

off—diagonal coefficients in the normal equations if there is a direction—,

distance—, or azimuth—observation between these two points, or if the two points

are directionally co—observed from a third station. In this way, station I is

connected to stations 2,3,56,8,9. Station 8 is connected to 1,25,6,9,lO,12,

13,14,17,18,19. For any station i we can specify the highest numbered station s

connected to station i. Thus s9, s8=19. We may calculate the number

w = 2 * MAXfs1—i+1)

which is called the bandwidth of the system. The factor 2 has been introduced to

account for the fact that we have two coordinates per station. In our above

example we would have w2fs8—8+I)24.

S 16

It turns out that the normal equati

restricted to a band of width w as

on matrix A will have nonzero coefficients

indicated in figure 3.2. Note that w counts

Figure 3.1. — Sample network.
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only lines of coefficients above and including the main diagonal. The

coefficients below the main diagonal are never used.

Figure 3.2. — Banded normal equations.

In general, the band wil] not be completely filled with nonzero coefficients

of A. It will also contain some zeroes. The important thing to note, however, is

that nonzero coefficients arising during (partial) Cholesky

reduction, are also confined within the band. Some of these will appear at

places where A also had nonzero coefficients, and others will take the place of

original zeroes. The latter ones are called 11fill—in” coefficients.

The proof that fill—in is confined to the band is most easily derived from the

next to the last remark in section 3.2. There we saw that any row of any of the

Cholesky reduced states results by subtracting multiples of preceding rows from

it (and by dividing the row by a factor, if ic). However, preceding rows k, k.<i

can never have nonzero coefficients to the right of the rightmost eligible

position for a nonzero coefficient of a row i.
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2 t/2
rkl

1=1, . . .

A different numbering of the stations would generally result in a different

bandwidth w. One cou]d try to minimize w over all possible permutations;

however, this is not economical. There are computer algorithms that find near

optimal orderings in a short time. Frequently, a good 3rdering is found by

inspection. If a network is elongated, as in the example above, then numbering

along the lines that cross the network at the shorter distances often leads to a

good ordering. I believe the ordering specified in the figure 3.2 is near

optimal.

A consequence of the banded structure of A is that any one of the inner

products, i.e., the sums of products appearing in Cholesky’s algorithm, will

have, at most, w—1 nonzero terms. In fact, the first version of the full

Cholesky algorithm specified in section 3.1 can be respecified as follows:

= f a11 —

f a1 —

i—I

$AXf t , f—w+1 )

i—t

kKAXf t ,J—÷l

,MINfn,i÷w—1)

rrJ )/r11

Si

1÷1,

= f b

and

f— [
— r•s

:NAX(1,j_w+t) &7 )/r11

xi ( S —

HIN(n i÷v—t)
r1x ) / r i=nI . . .

On the one hand, a computer program for this algorithm would be more

complicated on the other hand, for w<<n, it would be much faster. It would save

much storage if the coefficients within the band were stored in a compacted way,

for example, as the columns of an array of size w*n.

D – 46



D.3.21 —

3.5.2 Ordering for small profile.

As pointed out in section 3.5.1, the saving of computer time

from the reduced number of product accumulations in Cholesky’

plausible, therefore, that methods have been designed which a

the number of product accumulations in the first place rather

indirectly by minimizing the bandwidth. One such method, which

compromise between simplicity and efficiency, is ordering for

and storage comes

s algorithm. It is

mi at minimizing

than doing this

is still a

small profile.

The profile of a symmetric matrix includes all elements of a column that are

located between the topmost nonzero element and the main diagonal, inclusively.

Hence, an element iJ is within the profile, if there is an element akJ*O

for a certain ki. A typical profile is shown in figure 3.3.

Figure 3.3. — Profiled normal equations.

The profile may include zero coefficients. Again it is important to note that

fill—in is restricted to the profile. The proof relies on a similar argument as

previously given for the banded structure. Subtracting a multiple of a row from

a subsequent row will never cause any nonzero entry outside the profile. The
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Cholesky factorization A=RTR will result in a matrix R which has nonzero

coefficients only within the profile. R, being upper triangular, will have

zeroes below the main diagonal, whereas A will have coefficients implied by the

symmetry there.

NGS computer programs which are currently being used to adjust moderately small

networks (up to about 2,500 stations) rely on ordering for a small profile. The

ordering algorithm, designed and described by Snay (1976), is heuristic and does

not yield a minimal profile in the strict sence. It will, however, establish a

fairly small profile in a short time. As will be clear later on, the algorithm

will also contribute to the adjustment of the entire U.S. network.

3.5.3 Identifying nonzero coefficients for a certain reduction state.

Before we proceed to still another ordering technique, we pause briefly and

reflect on the problem of identifying the nonzero coefficients of A associated

with a certain reduction state. Assume, for example, that the partial Cholesky

reduction has eliminated” stations 1 to 12, also marked by black circles in

figure 3.4. White circles indicate stations 13 to 29 that participate in the

partially reduced system The network is the same as that one in

section 3.5, except that the station numbering now conforms with a changed

sequence of elimination steps. From section 3.4, dealing with the geodetic

interpretation of a Cholesky—reduced system, we infer that the pattern of

nonzero coefficients after partial Cholesky reduction up to station p12,

inclusively is shown in figure 3.5.
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8 75

20

nodes

Figure 3.4. — Sample network with stations 1 through

12 eliminated from normal equations.

The numbering of rows and columns of the matrix A in figure 3.5 refers to nodes

rather than to coordinates. Hence the individual entries represent actually 2x2

matrices. Heavily shaded entries represent nonzero elements of the original

normals. Lightly shaded areas indicate the fill—in which occurs during partial

Cholesky reduction up to and including station p:12. Let us give the appropriate

argument for a few entries.

* Entry (14,21). The shading indicates fill—in. Why are nodes 14 and 21

connected at this time? According to section 3.4 (Cf.? the explanation of the

expression there), we assume that nodes 1 to I2fp) are free, as

well as node 14. We assume the other nodes fixed to their adjusted position,

except for node 21, which is displaced from its adjusted position. The

displacement of node 21 will cause the direction bundles at the neigboring

25,26 to rotate. As a consequence, the free node 12 will move away from its
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is the zero movement is neglected here, as it is in all treatises of sparse

rnatri ces

Entry (3,8). The shading indicates fill—in again. This time we refer to the

rule for —r1/r11 given in section 3.4. We pretend that only nodes 1,2,3 have

been eliminated, i.e., we temporarily assume p3. We further assume nodes 4 to

29 fixed to their adjusted positions, except for node 8 which is displaced. This

causes the bundle in 5 to deviate from its adjusted position, which in turn

displaces nodes 1,2. The displacement of 1 and 2 will finally displace node 3.

Hence r38 must be nonzero, in general.

Entry (10,13). We may put p=10. Displacing node 13 causes movements of the

bundles connected to node 13. No movement takes place to the left of the barrier

formed by the double line of nodes 21 to 23. Hence the coefficient must be zero.

In fact, coefficients (i,j), i11, 12j20, must be zero. We see that a barrier

of a double line of nodes crossing the network can effectively keep down the

fill—in. This observation leads us to the ordering scheme considered in the next

subsection.

3.5.4 Nested dissection.

We have just seen that by appropriately ordering the stations we may establish

barriers which divide the network into parts such that the interior stations of

one part will never become connected to interior stations of another part. The

numerical analyst George (1973) fully exploited this idea. He calls his ordering
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scheme “nested dissection”. As we shall see later, this is anticipated to some

extent by what is known among geodesists as “Helmert blocking”.

Figure 3.6 exemplifies the idea of nested dissection. The individual stations

are not shown here. Instead, we see subsets of stations carrying labels 1 to 4.

Figure 3.6. — Nested dissection
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We imagine that these labels are attached to all nodes of a particular subset.

Nodes carrying label 1 are eliminated first. The sequence in which this is done

is not of much importance as long as the number of stations in one connected

subset is small. Should this number be larger, we may imagine that an ordering

for small profile is done in each individual subset. At the next step we

eliminate nodes labeled 2, then 3, and finally 4.

Let us now take a look at the connections a certain node labeled i may encounter

to nodes that come later in the ordering sequence. Such nodes carry either the

label i or a label j>i . Connections to label i nodes are possible only if the

other node is in the same connected label i subset. This is true, because all

other label i subsets are separated by barrier subsets of higher labels.

Connections of a label i node to nodes of higher labels are only possible if the

higher label nodes are located at a barrier surrounding the subset of node i.

Any node will be connected to only a few nodes that cone later in the ordering

sequence. This is particularly true at the lower levels. It follows that

matrix A will be quite sparse, although the pattern of,zeroes is now rather

complicated.

In order to see the power of nested dissection, we imagine a fairly homogeneous

network of n stations covering a region which is shaped somewhat like a square.

George (1973) shows that the number of nonzero coefficients (original A plus

fill—in) is bounded by
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const1 n log n

If, in contrast to this, we subject the network to ordering for small bandwidth,

we can bound the nonzeroes only by

const2 n312

Also ordering for small profile could not achieve anything much better. Assuming

an efficient storage scheme, the storage requirement grows roughly proportional

to the number of nonzeroes. However, the factor of proportionality is different

from method to method. Nested dissection, in particular, has a more complicated

pattern of zeroes that necessitates the storage of additional pointers to keep

track of the nonzero elements.

Despite the different proportionality factors and also the difference between

const and const2 in the above formulas, it becomes clear that asymptotically,

i.e., as n grows on and on, nested dissection is superior. In fact, as n—>x, the

ratio of storage requirement for nested dissection and bandwidth tends to zero

as const log n / n1’12. In this context it is interesting to note that no

crdering scheme can improve upon nested dissection asymtotically by more than a

constant factor.

We have argued that the number of nonzeroes is directly related to storage

requirement. It is also indirectly related to the amount of computational labor.

Let us take a look at the number of product accumulations necessary for the
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triangular decomposition of A. As it turns out, these product accumulations

account for most of the computation time needed to solve the normal equations by

Cholesky’s method. George (1973) shows that this number is bounded by

const3 n312

if nested dissection is done. Bandwidth ordering, on the other hand, requires

const4 n2

for a homogeneous network of the type mentioned. Again the asymptotic

superiority of nested dissection becomes evident..

We conclude this subsection with a few remarks.

Remark. Asymptotic superiority of a method does not necessarily mean superiority

for moderately small networks. As already indicated, the exploitation of a

complicated pattern of zeroes can cause an overhead of storage and computation

time. In addition to nonzero coefficients, overhead storage is needed for

addressing information which must be stored and for storing a more complicated

program.

Remark. Faced with a given network, the subdivision of nodes into categories of

different labels is not always immediate. The network will not always be

rectangularly shaped, and it will not always be possible to identify a number of
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first level sets equal to a power of 4. In pratice, it will be necessary to

compromise. Occasionally, the connected subsets of stations of the same label

will deviate in number and shape from the ideal case shown in figure 3.6.

Remark. To avoid pitfalls, one must be sure that the barriers dividing the

network, as indicated in figure 3.6, are virtually impenetrable. For the types

of networks considered, i.e., those involving bundles of directions, distances,

azimuths, and absolute positions, the following rule applies. From and to a node

of label i there may be lines of vision only to and from, (I) nodes of an

adjacent lower label set, (2) nodes of label I which are in the same label i

subset, (3) nodes of higher labeled adjacent sets. Otherwise one will try to

keep the barriers as thin as possible. Roughly one will arrive at barrier sets

composed of double rows of points, as already encountered in the example of

figure 3.4. However, there will be exceptions, particularly in the presence of

very long lines of vision.

3.5.5 Helmert blocking.

Let us briefly review the basic idea of Helmert blocking for the small network

shown in figure 3.4. We reproduce the network in figure 3.7. The dashed line

separates two blocks. The nodes marked by simple circles are interior to the

relevant block. The nodes marked by double circles are junction nodes, forming a

barrier between the two blocks. The normal equations are assembled separately

for each block:
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Here x1, x2 denote the coordinates of stations interior to blocks 1, 2, and x3

denotes the junction station coordinates. Observations between interior stations

of block 1 contribute to block I equations. Observations between stations

interior to block I and junction stations also contribute to it. A similar

statement can be made for block 2. Observations between junctn stations

contribute to the block in which the instrument was positioned. In this context

note that the dashed line attributes uniquely a block to any station.

2

20

Adding the two systems of normal equations would result in the conventional

normals for the entire network. However, elimination starts for each block

Block 1:

Block 2:

A11 813 xl a1

831 833 x3 b3

A22 C23 X2 a2

C32 C33 x3 c3

Figure 3.7. — Sample network decomposed into two

Helmert blocks.
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separately. The unknowns x1, x2 are eliminated from the two systems by partial

Cholesky reduction:

R13 x1
B]ock 1: =

83p)

22 23 x2 t2
Block 2:

33

The two partially reduced systems for the unknowns x3 are taken out and added:

( ÷ 33 ) = ( b + q) )

This system is solved for x3. Back substitution into the two above systems

yields x1, x2.

The solution is equivalent to the solution of the normals for the entire

network. The proof of equivalence is fairly simple. During the partial Cholesky

reduction modifications to the coefficients pertaining to x3, i.e., to B33, b3,

C33, c3 are made only by adding to or subtracting something from them. Because

the quantities added or subtracted are same as they would be if the entire

system were partially reduced, it is irrelevant whether the equations for x3 are

added before or after the partial reduction.

A larger network will be partioned into more than two blocks. A hierarchy of

blocks can be established that is similar to the nested dissection procedure. In
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fact, one can view figure 3.6 as a Heirnert blocking scheme. There:are as many

first—level blocks as there are sets labeled 1, i.e., the numberis 64. The

normal equations are formed for each first level block separately. Higher

labeled nodes situated in adjacent barrier sets take part in the normal

equations as junction nodes. The dashed lines separating the first—level blocks

have to be imagined as bisecting the barrier sets between the sets labeled 1.

All observations must be used in forming the normals, and any observation must

be used only once.

The interior nodes are eliminated from the first—level blocks. The partially

reduced normals for the junction nodes of four adjacent earlier first—level

blocks are added to form the normals of a second—level block. In such a

second—level block the nodes labeled 2 now play the role of interior nodes. The

junction nodes have labels higher than two. There are 16 second—level blocks.

The number of blocks has been reduced by the factor of one—fourth. The interior

nodes are eliminated from the second—level blocks, etc. Finally at the fourth

and last level we deal with a system for the coordinates of these stations. Back

substitution cascades down through the previous levels and successively yields

the coordinates of the lower labeled stations.

What is the difference now between Helrnert blocking as described here and nested

dissection? Not much. In fact, Helrnert blocking is slightly more sophisticated

because the normals are not fully formed before reduction starts. Instead, the

normals are formed separately for each first—level block. After partial

reduction at any level, normals of a number of blocks are merged by adding them.

D – 59



- D.3.34 —

These operation have to be viewed as part of the formation of the normals rather

than part of the solution process. george (1973) pointed out that substantial

savings are realized in computer time and storage associated with the peculiar

way of combining four i—level blocks to form one i+1—level block. Although

Helmert bloc.kin.g has been widely used by geodesists, I do not know of any

reference where it has been done by nested dissection. Instead, in most cases,

only two levels have been considered. Helmert or his geodetic followers did not

appear to anticipate george’s logarithmic law.

The U.S. network will be adjusted by the Helmert blocking technique. Partial

reduction at the intermediate block level, as well as the reduction of the last

level system will be done by Cholesky’s method. First—level blocks will be

ordered individually for small profile. Higher level blocks will also be ordered

to some extent, but ordering becomes less significant as the systems tend to

become less and less sparse.
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4. One dimensional cubic spline interpolation.

4.1. Introduction.

We start with the familiar problem of interpolation. We are given a finite

number of abscissas x , x , . . . , x , and a corresponding set of function values
0 1 n

y, y, .
. •, y. The problem is to specify a smooth curve interpolating these

data. Without loss of generality we may assume

x <x < ...<x
0 1 n

Y2 ... yn_1
yn

xrxrE

Fig. 4.1.

The abscissas need not be equally spaced.

The classical solution to this problem is polynomial interpolation. The

polynomials are either algebraic, i.e.

2
pfx) = a + a x + a x + . . . + a x

0 1 2 n

or trigonometric
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tfx) + a cos x + b sin x + a cos 2x + b sin 2x ÷
2 1 1 2 2

The polynomials are fairly easy to set up by means of methods specified by

Newton, Lagrange and others. They are also quickly evaluated, in particular if

they are algebraic.

A disadvantage, often noted in practice, and strongly supported by theory, is a

tendency toward instabilities if the number of specified nodes increases. If the

polynomial is algebraic, its degree equals the number of locations minus 1. A

polynomial of high degree, which is forced to interpolate a set of specified

data, has a tendency to oscillate. It can even be shown, that a sequence of

interpolating polynomials resulting from a sequence of mote and mote dense data,

will diverge in “most cases”. In practice, polynomials of degree exceeding 5 are

rarely used.

In a number of fundamental papers, 1.1. Schoenberg proposed a different

interpolation scheme which is based on the use of piece—wise polynomials.

Instead of using a single polynomial interpolating all data y0, y1, .. . , y at

x, x, . . . , x, Schoenberg proposes to use different polynomials in the

successive intervals

[x ,x ], I 0, .. . , n—I
I j+t

The polynomials are of low degree. Cubic polynomials have proved themselves to

be very useful. At the interval boundaries, i.e. at the abscissas
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x0,x1, .
•,

x, the polynomials are forced to attain the prescribed values

y,y ,

0 1 n

This obvious interpolation requirement makes the resulting function sCx)

continuous everywhere. In addition one postulates continuity of a number of

derivatives s’fx), sfx) ... at x , ..., x
1 n—I

The interpolating function s(x) is called a spline functior.. In the case of

cubic polynomials we call it a cubic spline. Cubic splines are required to be

continuous together with their first and second derivatives. Cubic sp]ine curves

are very smooth. Their name “splines” is derived from elastic rules used by

Dutch shipbuilders as an aid to draw smooth curves which are constrained to pass

through prespecified points.

4.2. Parameterizing a cubic polynomial.

A cubic polynomial is represented as

2 3
p(x) = a + a x + a x ÷ a x

o 1 2 3

A slightly different representation is obtained if the origin is shifted to

x=x
0

2 3
pfx) a + a fx — x ) + a (x — x ) + a (x — x )

0 1 0 2 0 3 0

In any case, the polynomial has 4 coefficients which serve to parameterize it,
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i.e. to identify it. Other ways to paranieterize the polynomial are frequently

more useful. Suppose that at two locations x, Xb, corresponding function values

= b
p(x) are prescribed. Assume that also the derivatives

VY’ =VP’fXa)i y p’(x) are prescribed. Our aim is to parameterize the

polynomial in terms of these 4 values.

We imagine pfx) to be written as

2 3
pfx) a + a Cx — x ) + a Cx — x ) + a Cx — x )

0 1 a. 2 a S a

We require ptx) to attain the prescribed values at x X, Xb Four equations

result:

0

y’ a

2 3
y = a ÷a tx—x ) ÷afx—x ) ÷atx—x )

b 0 lb a 2 b a 3 b a

2
y’ = a ÷ 2a Cx — x ) ÷ 3a Cx — x )

b 1 2 b a 3 b a

This system of equations expresses the new parameters y, . . . , y in terms of

the old ones a . . . a . In order to obtain the expressions of a . . a in
0’ ‘3 0’ 3

terms of y,.
.., y, we solve the linear system for a,..

•,
a. The result is
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a y
0 a

a y’

a 3Yb Ya) — f2y + Y)fXb — Xa)

2 tXb — xa)2

—2(y — y) + fy + yj)fXb Xa)
a

(xb — xa)3

For later use we express the second derivatives of the polynomial at x
=

X, Xb

in terms of the new parameters
‘a’

• y. Using p’ ‘fx) 2a2 + 6a3(x
— Xa)i we

obtain:

p’ ‘(x =
— 4y —

2y + 6Yb —

YIP
a Xb — Xa Xb — Xa (Xb — Xa) a

p11fx )
2y + 4y

— 6Yb — y)

b Xb — Xa Xb — Xa b — xa)2 b

Remark: We mention in passing that another useful paramneterization of a cubic

polynomial relies on the parameters
‘a’ b’

y’1 , y . Such a parameterization is

occasionally used in the literature. However we prefer the one described

earlier.

4.3. Condition at the inner nodes.

Our interpolating cubic spline is now represented as

s(x) p. tx), x x x. I 0, . . n—I
i,i+1 1 1+1 ‘
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The cubic polynomial p. Cx) refers to the interval [x x ]. The formulas at
1,1+1 i’ •1+1

the previous section apply if we identify

X. X ; X. X ; v’ ; y. y
7 a 7+1 b 7 a 7+1 b

Let the polynomial p. tx) be represented in terms of coefficients as

1,1+1 1,1+1
p (x)a +a fx—x)+

1,1÷1 0 1

1 1+1 2 I 1+1 3
+a’ fx—x) +a’ fx—x)

2 1 3 7

One could parameterize the whole spline sfx) by the set of parameters
I ,1÷1 1,1÷1

a0 , . •, a3 , i = 0, . . ., n—I. However this set of parameters is

redundant.Ihe interpolation requirement stx.) y., i 0, . . ., n, and the

continuity requirements for stx), s’tx), s’ ‘Cx) at x., I I, .
. .,

n—I, impose
I I+L

conditions on the parameters a’ , i 0, . . •, n—I, j 0, . . ., 3.

The polynomial p..1fx) is alternatively parameterized by y., y.1, y, y1.

This implies a parameterization of the spline stx) in terms of y1, y’,

i=O,. . .,n. This parameterization automatically guarantees that

(1) sfx) interpolates the values y. at x,, i 0, . . n

C2) sfx) has a continuous derivative.
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A third condition, namely that

(3) s(x) has continuous second derivatives

must be enforced. It result in the set of n—I equations:

p Cx ) = p Cx ) i 1, ... n—i1—1,1 1 1,1+1 •i

Using the expressions for the second derivatives given in the previous section

we obtain after divisic,, by 2:

y’ ÷2( + )y’ + y1x1 — x1_1 1—i x. — x1_1 x11 — x1 i x14.1 — x1 1+1

= 3fy
— Yj—j) ÷ 3(y1÷ — y1)

1 . . . n—Ixi — xi_i xi+j — x1

These are n—i equations for n+I unknowns y, .
. •,

y’. Iwo equations are missing.

They will be specified in the next section.

4.4. Boundary conditions.

In the previous section we have seen that a cubic spline is not uniquely

determined by the interpolation requirement. Iwo additional conditions must be

imposed. They are usually formulated as boundary conditions. We consider the

following 3 types of boundary conditions:
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(1) Constrained spline. The values of y and y’ are prescribed.

(2) Free spline. The conditions are

= 0

Explicitely fusing the last equations of section 4.3):

2 1 , 3fy1
— Yo

y+ y=
x1 — x0 0 x1 — x0 I fx1 — x0)

1 2 3fy — y_1)
y + y=

x — x_ n—I x — x_ n (x — xn_I
)2

(3) The periodic spline. It relies on the periodicity of the data, i.e.

y =y
0 n

Continuity of the first derivative implies the assumption

y =

Continuity of the second derivative must be enforced also at x0, x

respectively:
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p’ Cx ) p’’ Cx
0,1 0 n—1,n n

i.e.
1 1 1 1

y’ ÷2( + )y’ ÷ y’
x — X_; n—i x — x_ x1 — x0 0 x1 — x0 1

3fy — y_) 3(y1 — y0)

(x — x_)2 fx1 — x0)2

Other types of boundary conditions are possible, but will not be considered

here.

4.5. Tridiaqonal linear system.

Boundary conditions (1) and (2) listed in the previous section lead , together

with the continuity conditions of s’ ‘Cx) at the inner nodes, to a linear system

which is tridiagonal

b0y’ ÷ c0y d0

÷ b.y ÷ c.y i 1,
...,

n-I

ay’ ÷by’
n n—i n n n
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The system looks like

b c y’ U
0 0 0 0

a b c y’ d
1 1 1 1 1

a b c y’ d
2 2 2 2 2

a b c y’ d
3 3 3 3 3

a b c y’ d
n—i n—I n—i n—i n—i

a b y’ d
n n n n

By straightforward Gauss elimination we transform the subdiagonal elements a.

into zeros. This is called the triangular decomposition phase:

Put

b :b , d :d
0 0 0 0

Compute:

b b
ak

c d d —=-—d kI
k k bk_i k—I ‘ k k bk_i k—i ‘
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The triangularized system is

t C
7

fyI 1
0 —o o —o

b c d
1 1 1

C yl
lj

2 2 2 2

C y’
n—I n—i fl—i n—i

b y1
L

Back—substitution gives the solution:

I - fl
n E

- tkk÷i
/ k n-i, n-2, ..., 2, 1, 0

These calculations can be done very fast in a computer. Only four vectors whose

components are a b c d k 0 . . . n need to be stored.
k / k’ k’ k’
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4.6. Modification for the periodic case.

In the periodic case the linear system looks as follows

b c a [ 1 [d

a b c
1 1 1 1

a b c y’
2 2 2 2 2

a b c y’ d
n—2 n—2 n—2 n—2 n—2

c a b y’ U
n—i n—i n—i n—I n—i

The system is not completely tridiagonal. Hence the formulas for Gauss

elimination must be modified. The triangular decomposition phase starts by

treating only the first n—2 equations as follows:

Put

b b • e e a • e 0. k 2, . . . n—3; e
0 0’ 0 0 0’ k ‘ n—2 n—2

Thus ek, k I, . . . , n—2 gives the first n—2 elements of the last column of the

matrix.
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Compute:

b b
k k bk_i k—I

a
k 1 2 n—2

k k bk_I k—i ‘ ‘ I

ak
e e

k k bk_I k—i

After these operations the system looks as

ylo o 0 0 0

yl
1 1 1 I

C yl
2 2 2 2 2

yl
n—2 n—2 n—2 n—2

c a b y’ d
n_i n—i n—i ni n—i

The triangular decomposition phase is completed by the following set of

formulas.

Put

f
0 n—i

k0
kz2,

f
n—2 n—i
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Thus f, .
. .,

f represent the first n—2 elements in the last row. Also put

f f.
o a

Compute

f f _.zLc kzl
... n—2

k k bk_I k—I ‘

and:
flif —

b b —

k1

n—i n—i bk_I k—i

— n_i

n—i fl1 k1 bk_I k—i

The system is now triangular:

yl
o a 0 0 0

YE
i i 1 i i

2 2 2 2 2

YE
n—2 _n—2 n—2 _n—2

YE
n—i n—i n—i

D – 76



— D.4.15 —

Back—substitution is done by

y_1

—
efl_2yfl_1

yn_2
b_2

— Cky÷1 Y
, k n—3, ..., 0

4.7. Interpolation of curves in the plane.

The parameter representation of a curve in the plane is given by two functions

x xft)
,

y yft).

There is some redundancy in the parameter representation. It defines not only

the shape of the curve1 it supplies in addition a mapping of an interval of the

real line onto the curve. One can require that the parameter t equals s, the arc

length along the curve. In our subsequent formulas t will be close to s, but not

quite identical.

Let a discrete set of points fx., y,), i 0, . . . , n be given. The requirement

is to interpolate a smooth curve through those points. Cf. fig. 4.2.
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Fig 4.2.

. x

1

Note that the curve of fig. 4.2 could not be represented as

y ftx) or x gfy).

The functions ffx), gfy) would not be single valued.

We consider the polygon of chords also shown in fig. 4.2. Our first choice of

the parameter t will be the arc length along this polygon. We arrive at two

conventional interpolation problems:

Interpolate

and

x(t.) x.,
7 7

i = 0, .
. •,

n

yft.) = y1,
i = 0, . . n
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for t. being the length from point 0 to point i measured along the polygon of

chords. We use the apparatus developed in the previous section to obtain two

spline curves x(t), yft). The boundary conditions are chosen according to the

given situation. A closed curve would require periodic boundary conditions. The

resulting curve has continous curvature1 (because x(t) and yft) are twice

differentiable functions).

A slight flaw is that t is not the arc length. One can improve upon this by

computing the arc length at the points 0, .
. .,

n along the interpolated curve by

means of numerical integration. One obtains value s 0, s, .
. .,

S. Replacing

to 0 t2, .
. .,

t by these values, one could recompute the spline. The

procedure could be iterated a few times. Frequently, however, one is satisfied

with t being the arc length along the polygon.

4.8. Splines viewed as a vector space.

Given a fixed partition x < x < .

0 1

functions for all possible ordinates

conditions. One readily verifies that

parameters are necessary to uniquely

choice for those parameters is a set

the dimension of the vector space is

< x, we consider the set of all spline

y0,...,y, and for all possible boundary

this set forms a vector space. Because n+3

specify a particular spline (a possible

of values y,. . .,y together with y, yH),

n÷3. We can construct a basis as follows.

D – 79



— D.4.18 —

Let a.(x) be the spline fulfilling

a.fx.)
7 ] 7]

and

aix ) = afx ) = 0
10 in

Let 0fx), fx) be two splines fulfilling

fx)=atx)=0 j0...n
0 j n j I

‘(x ) 1, ‘fx )
00 On

fx ) = 0, ‘fx )
nO n n

The splines a fx) . . . a fx) fx) tx) form a basis. In fact the function
0 ‘ ‘ii I 0 ‘ n

n

sfx) Z y a Cx) + y’ Cx) + y’ (x)
00 nn

gives precisely the spline interpolating y,.. .,y and having boundary

derivatives s’(x0) y, s’(x) y’. Fig. 4.3 shows some of the basis

functions, assuming n8 and equidistant data x. i, i0,.. .,n.

Another basis which is practically more important will be discussed in

chapter 6.
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I I

I I I I

0 1 2 3 4 5 6 7 8

The splines sfx) fulfilling

Fig. 4.3

A sample of basis splines for n8

and s’fx )
n

form a subspace of dimension n+1. A basis for this subspace is given by a.fx),

s’(x ) = 0
0

=0

1=0,... ,n.
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Another subspace of dimension n÷I is given by the set of all free splines.

splines fulfilling

i.e.

s’’fx )
0

0 and s’’fx
n

0

A basis for this subspace can be readily constructed. Fig. 4.4 shows some of the

basis functions.

A third subspace, this time of dimension n, is represented by all periodic

splines. Fig. 4.5 shows some of its basis functions.

I • I ,. I.

/7T\—

12365678

Fig. 4.4

A sample of free basis splines for n8
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I I

0 1 7 8

Fig. 4.5

A sample of periodic basis splines for n8

4.9. The locality of splines.

A look at fig.’s 4.3 — 5 is very instructive. Any basis spline is appreciably

different from zero only in the vicinity of the node to which it is associated.

The more we go away from this node, the mote the amplitudes are dampened. One

can show that the dampening is exponential. The practical implication of this

phenomenon is very important. The shape of the spline interpolated in a small

region is only influenced by data near this region. If data are changed at a

location far away the shape of the spline will not be noticeably changed

anywhere else. The spline is as smooth as the data in a close vicinity imply.

This is not so with polynomial interpolation. Look at fig. 4.6 showing basis

functions for polynomial interpolation.
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Another consequence of the locality of splines is a certain de—emphasis of the

boundary condition. In a region not too near to any of the two boundary nodes

the shape of a spline is practically independent of the chosen boundary

condition. Hence boundary conditions are a mathematical technicality which is

often of little interest to the practician.

0

-t I I I I I I I

1 2 3 4 5 6 7 8

Fig. 4.6

A sample of Lagrange interpolation polynomials for n8
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5. Two—dimensional spline interpolation.

5.1. Introduction.

Assume a Cartesian coordinate system in the plane. Define a grid by means of

lines

X = X0, X = X1, .

. .,
X = Xm, X0 < X < . . . < X

and

Y Y, y = y1, . .., y = y, y0 < y1 < ... < y

The grid covets the rectangle

X0 X Xm

y0yy

The intersections of the grid lines, i.e. the points (x,y1), i 1, . .
.,

j 1, .
. .,

n are called grid points or nodes. Assume that function values

z zfx,y3), I 0, . .
•,

in, j = 0, ..
•,

n

are defined at the grid points. Our purpose is to interpolate these function

values by means of a smooth function defined everywhere inside the area coveted

by the grid.
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5.2. Bicubic polynomials.

Focus attention on a particular sub—rectangle .• V

xi x y y y÷

Consider there a bicubic polynomial

p(x,y) i0 a1fxx1)k fy-y)1

The polynomial is currently pararneterized by its 16 coefficients ak,,

k,2 0, .
. .,

3. We will re—parameterize it in terms of “nodal parameters”.

These are the values of the function z(x,y) to be interpolated together with

some of its derivatives. The nodal parameters are:

zfx,y), z(x,y), zfx,y), zCx,y)

evaluated at the four corners of the subrectangle. We introduce the notation

z = zfx,y) = z(x,y)

= zfx1 ,y) w1 = zfx,y)

The 16 nodal parameters are then

Zi+rj+s, Ui÷rj+s, Vi+rj+s, Wi+rj+s, t, S 0, 1

D – 88



-
1 II

C
.,

c
-

.
—

1
-

CD
-
a
.

C
-’

-
C

D
C

-?
.

-
J
.

c
-,

—
J

U
)

U
)

c1
—

a
.

C
))

c
CD

C
D

C
-
b

U
)

C
D

-
tJ

•
-

e
-

-
s

r
i

—
‘

o
><

0
1

-
1

-
CD

-
U

V
1

U
)

U
)

—

.<
C

,,
ii

o
/A

C
))

-
-

>
(

-
,

C
-,

-
C)

)
-
I
.

‘
.r

-
a
.

-
..

II
0
)

+
—

J

0
)

-
-

-
0
)

M
-

-
C

))
-
-
a

-
—

U
)

>
<

“
-

>
(

-
r
-

CD
-

U
)

U
)

-
‘
-

-

—
U

)
+

3<
+

-
II

—
-

—
.<

:
,
-

II
I

I
‘I

I
0
)

c
o

ii
ii

3<
—

3<
-
,

U
)

-
—

—
-
‘
.

/A
>

<
3<

..
-.

C
-,

-
-
.
-

C
))

i
.

3<
3<

C
—

.
-a

.
-a

.
7

-
-

V
y
r

-.
:3

-
,

-
—

+
+

÷
C)

)
-.

p
+

+
—

-
I

CD
/A

—
I

I
-

-
<

U
)

U
-)

I
I

-
<

3<
<

.
—

I)

I.
—

1
)

3<
3<

C
—

’.
-
J
.

C
-a

.
÷

•
0

...
.a

.
—

j
.

-
--

-
+

.-
1

—
-1

-
U

)
I

-
-

.
U

)
0

C
D

L
<

3
<

C
-a

.

C
II

-
•

tz
r

CD
C

-.
.

C
-a

.
3<

3<
0

+
+

—
‘•

—
‘.

r-J
c-

i-
U

i
?
.

—
+

+
—

‘.
0

-
.‘

I
I

-1
-1

+
C

...
)

C
))

C
<

C
-
.

,
-

-
c
.

c
.

c
<

-
1

%
-

%
—

C
a
.

C
-
.

C
-
.

+
0

+
+

+
o
-

-
U

)
—

-a
.

3
<

R
C

.,
r
’

—

C
—

R
R

R
R

C
.,

I-
,)

—

t_
)

r%
2

t.
3

U
—

C
.,

c
C

C

-
-

-

C
.,

th -:
3 I—

CD
+

.<
-

—
II

U
><

-a
.

-

+
+

<
3<

1
C

-
.

0
-

+
+

-

0
C

-
.

I
+

C
.<

3<
C

D
U

)
C

-
.

-
b

0
U

)
II

.

II
+

+
0
)

1

-
C

-
.

C
-
.

4-
+

U
)

U
)

C
))

—
5

CD C
-
,

+

C
—

.

D – 89



—
c%

J
C

’)
C

-
-

-
c

C
’)

C
C

’)
-
4

I
I

I

-
c

-
4

—

:3
:3

•
)

•
C

’)

.
.

C
)

=

—
C

%
J

C
’)

-
4

-
4

-
4

-
4

I
.

C
t;

4
JQ
.)

(p
9
,

(p
9

,
C

D
C

D
—

C
’)

=

CO

-I-)

‘1
,

z0c4
.—

V
)

a
)

4
.-

U>a
)

0

C
D

-
4

C
D

C
D

_

—

:3
0
-

:3

_

—

C
p

9
,

(p
9
,

C
D

-
4

-
4

.

(/)
toc/)

II

.3
4

_
i

U-4
-,

5—U

=
II

1
z

D – 90



C
)

C
J

C
t)

.
I

I
I

-
-

CUL
I)

a
,

>

L
i)

4
)

0

U
,

(
4a
,

L
I)

0
T

h

5
-

6U5
-

C
t)

a
,

U>:3a
,

L
I)

C
-)

—
3

-
3

—

C
f

9
,

C
p

9
,

>

7
(4

_

L
I)

a
,

4
-
,

U
)-‘4

a
,

-4
-,

6C—
U

-

a
,

C--
a
,

-4
-)

a
,

6C--
+

cci

-‘4><

a
,

>C
a

6

+
(ci

q
_

I
-

0
><

60
ci)

L
J

a
,

>
•)

:3

0
(ci

0
_

>
-

-‘4
C

)
a
)

•
-

-

-
4
-)

C
)

0
•
‘4

•
‘
-

U
)

C
a

-
I
—a

,
_

‘
4

-
C

--
0

(ci
6

6
(ci

a
,

><
a
,

0
N

I—:30C
)

>
_

)
a
,

I

><
0
)

>
C

a
>

-4
_
i

N
C

)
a
,

C0:3
>

C
I)

>
c

(t

>
<

C
6
_

0
N

U
,

CU

>
-,

C
-

cC
)

C
--

:30(
4U4
-)

-4
_
i

C
a

C
-
4

C
%

J
-
4

-4-)
ca
,

a
,

(
4

4
*

-

0
—

3
-

3

0
0

—
C

f
9

,
C

f
9

,

II

>>
<>

>

0UU
,

:3a
,

C
•)

C
•)

C
)

C
•

0
—

C
’)

j

C
..J

C
•J

(%
J

0
—

0
—

C
%

t

0
0

0
0

0
—

C
J

-
4

-
4

C
t)

C
J

-
4

C
’]

-
4

-
4

C
t)

C
S

)

D – 91



— D.5.6 —

5.3. Herinite bicubic interpolation.

Suppose that z1 = zfx1 u1 = zfx11y), v1 z(x,y),

w = zfx,y3) are available at all (m+I)fn÷1) grid points (i,j),

i 0, . . . , rn, j = 0, . . . , n. Interpolate a bicubic polynomial

p13 fx,y)
k=O

a fx—x1 )k fy—y)1

in any of the m•n rectangles x1 x y3 Y+t 1 0,
.. •,

m—1,

j 0, . . ., n—I. The resulting function

hfx,y) = p13fx,y) ... for x1 x y Y Y÷

is defined for the whole domain x0 x x, y0 y y. It is called a

Hermite bicubic interpolation function.

Theorem: h(x,y) is continuous and has continuous derivatives h(x,y), hfx,y)

and hfx,y).

Proof: Consider hfx,y) as a function of x, viewing y as a parameter. In

x1 x we have

lini hfx,y) = p’fx,y) = ffx), say
y 4 + 0

lim hfx,y) ph13fx,y) = ffx), say
y9Y3 —0
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The functions f÷tx), f_tx) are one—dimensional cubic polynomials in x. We have

f(x1) ftx1) z1, f’Cx1) f’(x)

f÷(x1÷1 ) = f_(x÷1 ) = z1÷
,

f’÷fx1÷ ) = f’_fx1÷1 ) = u1÷
,

Because a one—dimensional cubic polynomial is uniquely determined by these

values we have

f÷(x) f_fx)

It follows that hfx,y), hfx,y) ate continuous across x—grid lines. (Such grid

lines are parallel to the x—axis; they are straight lines of constant y = y).

Likewise it follows that h(x,y), hfx,y) are continuous across y—grid lines.

Hence the continuity of h(x,y) is already established.

Next we show that h(x,y) is continuous across y—grid lines, and also that

h(x,y) is continuous across x—grid lines. Consider h(x,y) as a function of x

while y plays the role of a parameter. Call

hCx,y) = p1’3fxy) g÷fx)

hfx,y) = p’1fx,y3) = g_(x)

The functions gfx), g_fx) are cubic polynomials in x. We have

gfx ) = g_fx1 ) u , g’fx1 ) = g’_fx1 ) = w

g÷(x÷[) g_fx÷1) =u÷1, g’÷fx1÷1) :g’_(x1÷1) =w1
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Similarly as above, one concludes that

gtx) g....fx)

This proves the continuity of h across x—grid lines. By symmetry the continuity

of h across y—grid lines follows too.

Finally, the continuity of hfx,y) will be shown. We have shown that hfx,y) is

continuous. For fixed y, h(x,y) is a cubic in x for each subinterval

x1 x x1. . Thus hCx,y) may be formed. At y y, the derivatives

hfx,y3) = wN and hfx1+11y) = w+1 are prescribed. One infers that

hfx,y) is continuous in the strip x1 x acros all the x—grid lines.

Interchanging the roles of x, y, noting that one infers that in the

strip y y y1 , h is continuous across the y—grid lines. Thus is

continuous everywhere.

5.4. Bicubic splines.

5.4.1. Definition.

We want interpolating functions that are smoother than the Herrnite bicubic

interpolators. At least the continuity of all second derivatives will be

requited.

We take a one—dimensional spline Afx) with nodes x0, .
. •, x, and we take
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another one B(y) with nodes y0, .
.,

y. We form the product

s(x,y) = Afx) 8(y)

It is a function having the following continuous derivatives

sfx,y), sfx,y), s(x,y), s(x,y), sfx,y), sfx,y)

sfx,y), sfx,y), sfx,y)

We consider finite sets of one—dimensional splines Afx), k I,
. •,

M and

B1fy), 2 = 1, .
•,

N. We form

sfx,y)
=

Akfx) B1fy)

The same statement about the continuity of the above specified derivatives can

be made. The set of all functions obtained in this way is a vector space. We

call it the space of bicubic splines for the grid x0, .
. ., xm, y0, .

. .,

5.4.2. The constrained bicubic spline.

Theorem: Specify

z. z(x11y), i = 0, . .
.,

m, j = 0, ..., n.

Also specify

u0 zfx01y), u = zfx,y), j 0, .
. •,

n

zfx11y0), v1 = z(x11y), i 0, ...,
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Finally specify

woo = zfx0,y0), wino

Win n

w0 zfx0,y),

= zxyCx,yn)

It is asserted that a unique bicubic spline matching these values exists.

Proof: We first prove the existence of the spline. We take the basis a1fx),

i = 0, .
. .,

m, 0fx), fx) for the one—dimensional splines Afx). This basis

was constructed in section 4.8. We take a similar basis bfy), j 0, . . . ,

(y), fy) for the splines 8(y).

We consider the bicubic spline:

s(x,y)

+ woo

+ won

The bicubic spline

This proves existence

z a1(x) bfy) +

[u0 0(x) bJfy) + urnj tx) bfy)] +

[v.0 a1tx) 0fy) ÷ v1 a1fx) fy)] +

0fx) f30(y) + Wino Ix(x) p0(y)

0tx) 3(y) ÷ xm(x) (y)

sfx,y) completely solves the stated interpolation problem.

We now prove uniqueness. We show that no other function s(x,y) exists which has

the following properties.
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Cl) s(x,y) is a bicubic polynomial in each subrectangle.

(2) sfx,y) has continuous derivatives 5, s, s,
•

as

specified earlier.

(3) sfx,y) interpolates the data specified in the theorem.

It suffices to show that a functi

function values at the nodes and

necessarily the zero function, fIn

(2), and interpolating data that ar

a function is a one—dimensional bic

line, e.g. that one for y y30, we

and f’tx0) u030 f’fxm) Urn,

the zero spline. It follows that

v are zero. The function gfx)

X1 E x xj÷ . It nust be a splin

on satisfying (1) and (2), having vanishing

having vanishing boundary conditions, is

a function satisfying Cl) and

must be the zero function). Such

along any grid line. Along a grid

fx) = sfx,y0): ffx1) = z10 = 0

this one—dimensional spline is

h. Likewise one concludes that all

a cubic in each subinterval

e derivatives and are

= 0. Also g’tx0) w00 = g’(x) =

w10 0, i 0, .
. .,

in. Similarly one

the splines hfx) = s(x,y) can be

= 0.

During our uniqueness proof we have in effect proved more than we original]y

wanted. Without any further argument we can state the following theorem.

other words,

e all zero,

ubic sp]ine

have with f

0. Hence

vanis

tx,y0) is

because th

jo

all

sy

e,

required to be

w0 0. Thus

infers that w•

conti

g(x)

= 0,

nuous. One has g(x1) =

0, and consequently

i = 0, .
. .,

in. Now

h(x1) v30 = 0, h’

for all I, j. A Hermi

= 0 must be the zero

interpolated. We

h3fx) = 0 and

zjj U1

have

=0

wIj

w0 = h’jfxm) = Wrnj

te bicubic function having

function. This concludes the

Thus

proof.
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Theorem: The space of bicubic splines s(x,y) coincides with the space of Hermite

bicubic interpolation functions upon which the requirement is imposed that in

addition to sfx,y), sfx,y), sfx,y), s(x,y), also the derivatives s(x,y),

sfx,y), sfx,y), sfx1y), sfx,y) and stx,y) are continuous. The

space of bicubic splines over the grid x0, .
. .,

x, y0, .
. •,

y has dimension

fni+3)fn÷3). A basis has been exhibited above. It consists of all products

Afx) Bfy) with

A(x) 6 {a0fx), .
. •,

afx), x0fx), r(x))

and

Bfy) & {b0fy), .
. •,

bfy), 0fy), Cy))

Thus it consists of all products of basis functions for the one—dimensional

splines over x0, .
. •, xm and Y01 . . Y

5.4.3. The free bicubic spline.

It has boundary conditions

z(x,y) zfx,yj) = 0, j 0, .
. •,

n

zfx,y0) = z(x11y) = 0, 1 0, . . ., n

z.tx01y0) zxxyy(xm,yo) = 0

A basis is readily obtained by using bases for the one—dimensional free splines
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and performing the (tensor) products, as it was done in the case of the

constrained spline.

5.4.4. The double periodic spline.

The requirements are that s(x,y) is periodic in x as well as in y. A basis can

be specified in an obvious way.
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6. Geometry of exact spline interpolation.

6.1. Formulation of the problem.

Let V1 W be Hubert spaces. We consider two linear and continuous mappings.

(1) The operator A maps V onto R. In case of finite—dimensional V, we let A be

represented by the matrix A. This matrix has more columns than tows, i.e. V is

of higher dimension than n, the dimension of R.

(2) The operator 8 maps V into W. The inner product in W shall be represented by

the matrix Q. In case of finite—dimensional V, W, we let the matrix B represent

the operator 8. B is then also a matrix having more columns than rows, i.e. V is

of higher dimension, than W.

We require that the nullspaces of A and 0 have only the zero vector in common

N(A)N(0) 0

and pose the following problem.

Given y R, find x V such that

(a) A(x) y . . . the interpolation requirement

fb) ll8fx)ll minimum . . . the mninimnum norm requirement.

Example 1: Let V be the Hilbert space of functions Ff), with inner
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find a function f V such that

(a) ff1)
=

i 1, . . ., n, i.e. f interpolates the prescribed function

values at the locations

(b) Hf”!!2 f(fu(x))2dx = minimum, i.e. f is in a sense the smoothest

interpolating function.

Example 2: Instead of a continuous interval of arguments , , we

consider a large, but discrete set of equidistant values

We denote the step size

h — , i = 0, . . .,
rn—I

We consider a corresponding set of discrete function values

f = ff), i = 0, ..., m

Out of the set ) we select a subset of n elemets ( , . . •, The

need not be equally spaced. At these selected locations we

prescribe function values
‘, ..

•1
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We pose the problem:

Given ‘ri, . . . find a vector ff0, f1, .
. .,

f) such that

(a) f11 =
, j = 1, .

. •,
n . . . interpolation requirement

(b) f—f1÷1 + 2f1 — f1_1)2 minimum . . . smoothness requirement.

Obviously this is a discrete version of the problem in example 1. The operator A

maps f (f0,
•

f) onto the subset of components ‘i 1
‘ ‘1n =

t n

The operator e maps the vector f onto the set of second difference quotients

(-f11 + 2f - f11) = (11+1- f1) (f1-

6.2. Definition of splines.

In V we consider the nullspace N NfA) of the operator A. Referring to

example 1, NA consists of functions vanishing at the locations of interpolation

I 1, . . ., n. The operator 8 maps functions f e N(A) onto functions g of

a certain subspace U = UfA,e) of W:

U ufA,e) (z N I there is x € NfA) such that efx) zi

Referring to example I, U is the set of second derivatives of functions

vanishing at the locations of interpolation.

We consider the orthocornplernent U of U in W. We consider the pre—images
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of elements in U under 0. This is a subspace S = S(A,0) of V.

S = S(A,0) = Cx V 8(x) Ui

S is called the subspace of splines in V. Its elements are called splines. Later

it will be shown that they are the solutions of the extremurn problem formulated

in section 6.1.

Examp]e Ia: (Continuation of example 1)

As we have noticed, N = NtA) is the set of functions vanishing at the locations

of interpolation. U UfA,0) is the set of second derivatives of such functions.

What is the set U? What is the set S

Theorem: For the spaces and operators of example 1 the set S is the set of

piecewise cubic polynomials p(’) on having the following properties

pf’) is ]inear in

p() is cubic in any of the intervals y 1 1, .
. .,

n—I

p(’) is continuous together with its first and second derivatives.

Such functions are called cubic splines.

Remark: An equivalent formulation of the above theorem would be: The set U

consists of piecewise linear functions vanishing in f3, and

whose slope is constant in any of the intervals i = I, . . n—i.
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Proof: It suffices to prove the version given in the preceding remark. We

decompose the proof into two steps, showing

(I) Any piecewise linear function qf’) with possible discontinuities of q’f)

only at
,

i = 1, ..., n and vanishing in z
,

< , is orthogonal

to any second derivative f”f) of a function vanishing at
,

i 1, . , n.

To show this compute ff”,q)

n—tf f”f) qf) d
= f + I ÷1

Apply partial integration twice, obtaining

f’t) qf—O) — f’() qf÷O) — ff) q’ffrO) + ft) q’(+O)
n—t

-

q’f11-O) - ft) q’fj÷O)} + f 1ff) q”f) d
n—t

. ;

+ it 1 1+ f) q”f’) d +
qHf) d

All terms vanish because of the properties of ff) and q(’).

(2) Let q() have properties required in (1). Such functions form a linear

subspace in W. We show: Any function g W orthogonal to this subspace can be

viewed as the second derivative g(’) = f”() of an f V, vanishing
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x are required to vanish.

Fig. 6.1 The function qf’)

Inserting these functions into the above equation gi.ves a linear system

fz3+ Z3), Z3

X41 fx4+ Z4), -Z4

6.3. Existence and uniqueness of splines.

Recall the decomposition of the space W into U and U. U = UCA,O) contains the

images of N = NfA) under the operator e. Recall that the space of splines

S = SfA,9) was defined as the set of pre—iinages of vectors in U.

//

i-2 j+2

ff.4)

ff)

=0

Xfl1, (x1+ f)

This system is regular and homogeneous. Hence the solution must be zero. G.e.d.
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Theorem: The space V is the direct sum of N(A) and SfA,8).

Remark: This means that any vector x 6 V is uniquely represented as

X ÷ x, x 6 N, x 6 5. Confer section A.5.1.

Proof: We start by noting that any pre—image x of a vector y & U may be uniquely

decomposed as X X ÷ Xb, Xa NfA), Xb 6 N(8). [If 8(x) = y with y 6 U, then y

is also the image of some vector Xa in NfA) y efxa). Put Xb X
— Xa, then

= efx) &fXa) = —
= 0. Thus Xb 6 Nt9)]. Next we show that any x V

may be decomposed as

xxN÷xS, xN6N, x56S

Let y 8(x). Split y y1 + y2, y1 e U, y2 6 U. Let x, x2 be pre—images of

Yt, y2, respectively. Put x3 = x
—

x — x2. Then 8x3 = y
— Yt —

y2 = 0. Thus

x x1 + x2 + x3 with x being a pre—image of a vector in U, x2 being in 5, and

x3 in NfO). As shown earlier, we may split x1 into x4 and x5, x4 & NfA),

6 N(8). Vectors in Nf8) have zero images. They may therefore be viewed as

vectors of S. Calling XN = x4, x5 = x2 ÷ x3 + x5, we get the desired

decomposition.

Finally, we show that only the zero vector is common to N and S. If x & NS,

then y 0(x) is in U as well as in U hence y 0. Thus X 6 Nf0). However it
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was postulated in section 6.1 that the only vector common to N N(A) and N(9)

is the zero vector.

We have shown that any vector x V may be uniquely decomposed as xN + x5. This

proves existence and uniqueness of the spline x. The original vector (function)

x and x5 interpolate the same data y. For A(x) ACxN + x5) A(x5).

6.4. Minimum properties of splines.

Theorem: Let x. V and let x5 be its spline. Then x5 solves the following two

extremum problems:

(I) Mm 110(x) — 8fz)11 = 110(x)
— 0fx)II

zc5

(II) Mm 110fZ)IIw =

zcY , ( z ) A (xi

Remark: Problem (II) was the problem stated in section 6.1. It shows that

splines have “the minimum norm property”. Among all functions interpolating the

same data as x does, 0(x5) has the smallest norm in W. Problem (I) is

complementary to problem (II). Confer chapter A.11 for a general discussion of

complementary least squares problems. Problem (I) shows that x5 has the “best

approximation property”. Out of the space of splines, the spline x5 is closest

to a given function x.

Proof: Given x & V, decompose x = xN + x5. In case of problem (I) we let
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z vary over the spline space S Then

x — z XN + fx5—z), XN 6 N, x5—z S

Thus

II9tx—z)112 = lletx)H2 ÷ IIOfx5—z)112

This is minimal for z x.

In case of problem (II) we let z vary over the set {z I Afz) = Afx)). Thus

z—x c N or z x ÷ u, u 6 N. Hence

Z XN+U+Xs, xN÷u N

llOfz)112 ftOfxN+u)112 ÷ IIetx5)112

The minimum is obtained for u XN. This proves (II).

6.5. Other examples.

The examples 1 and la treated earlier refer to the case of the free spline with

nodes
, .. .,

.

It has been shown that the free spline interpolating ft) at

has certain minimal properties CI) and f II). Similar properties hold

for the constrained spline and for the periodic spline. It is then preferable to

put and . Among all functions s() interpolating ff) at

, and having the same derivatives as ff) at the boundary nodes
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and
,

the constrained spline minimizes Ns”()I1. A similar statement holds for

the periodic spline.

Also a generalization to the bicubic splines is possible. It is interesting to

note that in the two—dimensional case the operator 0 is given by

Off) =

Thus the squared norm in W is given by

11f112 i d d’i

6.6. Prediction as a special case of spline interDolation.

Let

V =

A vector x V is represented as

xl

x x1 £ R, x2 £ Rm
x2
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Let A be implied by

(I, 0) x x1

Let the space W coincide with V and let the norm in V = W be implied by

pu Pt2

P21 P22

We denote, as usual

pt tL 12

Q21 22

Let the operator 0 be the identity:

e= i

Consider problem (II): Given 1 R, find x & V such that

x1 = 2 . interpolation requirement

llxll = minimum . minimum norm requirement
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This reduces to the problem

T p x = minimum

subject to

(1, 0) x = I

The problem is formally equivalent to a conditioned adjustment problem with zero

observations, residuals x and discrepancies 2; i.e.

(0 + x)T p (0 + x) = minimum

subject to

(I 0)f0 + x)

Thus the solution is

1
QIl

xP k, i.e. x k
0

where the correlates k follow from the normal equations

(I 0) P k — 2 = 0
0

i.e.

k = , k = 1
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Thus

x U11
x QJ 2

x2 U21

The forrnu]a

x2 U210112 = 0 Q-t

is the familiar prediction formula. (Usually written 2

Replacing the solution x by s, which stands for “splin&’, we know that the set

of all splines is obtained by letting 1 vary all over R.

Any spline 5 £ S is represented as

I
2 forsome

a a -‘
21 11

We know that interpolating splines are also the solution of problem (I):

Given x e V, find s such that

lix — sil minimum

subject to

S &5

Let us verify this directly. The problem is restated as follows

Cx — P fx — s) minimum
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subject to

I A

2
Q Q -t

21 11

This is formally identical to an adjustment problem by parameters with

observations x, adjusted observations s and parameters 2. The solution is

obtained via the normal equations

(1 Q1’Q12) ptt 12 I 2 = (I 0t112 tt ta X1

p2t 22 °21°tL P2t P22 12

Rewriting this as

Q12)Ot
= J’f0t 012)01x

or

Q1101101[1 = x

i.e.

1 x1

which was to be shown!
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6.7. Noise—ftee collocation with trend parameters.

Consider the problem

Given 1 e R, find x Rm, y e R such that

9 Ax ÷ By and Tp
minimum

The vector 1 is called observation vector. (Its coordinates are linear

functionals). The vector x 6 Rm comprises the trend parameters. The vector

B y is sometimes called “the signal”.

We put

V

such that for Z 6 V we have

x
z

y

The operator A is given by

1 A(z) = (A
x

B)
y

The space R of signals is taken as the space W. Its inner product is given by

the matrix P.
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The operator 9 is taken as

w = 9(z) (0, I) z = y

Our above stated extremum problem is precisely problem (II) of section 6.4. and

section 6.1.

Given 1 e R, find z V such that

I19fz)II = minimum

subject to

Afz) I

The special problem of this section is also formally equivalent to the socalled

“general adjustment problem”. Let us solve the problem in the familiar way by

means of Lagrange multipliers. Lagrange’s function is

(x,y) = yT P y - 2 ZT (A x ÷ B y - 2)

Thus

2 y r U —

T
— o2x —

The first of these equations gives

y P’B’L
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Insetting into Ax+By=1

B

AT

+ Ax

we get the system

=1

=0

Solving for x by partial reduction we

ATfE P_1BT)_tA

find the system and its solution

X = Af8 P’B’Y’1

Lx = fA’fB pt8I)lA)1AIf8 ptBT)T

From the first equation one finds

= (B pLgTyL(2
- Ax)

From y P’B’Z one finds

y = p-181f8 plgTyt(1
- Ax)

These are the formulas for noise free collocation with trend parameters x. Note

that the usual notation is

s = By

= g p_tgT =
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We prefer to introduce the notation

U
S =

V

for the solution of our problem. given 2 & R, we find u, v from the equations

B P’BZ + A u = 1

ATZ = 0

p_tgI,

Letting 2 run through R, we obtain the set S of splines s. Let us check,

whether also our abstract approach arrives at this set.

The null—space of A is given by the solutions of

Ax ÷ By 0

The space U consists of all vectors w which are orthogonal to a]l y’s which

fulfill A x ÷ B y 0 together with a suitable x. Thus

Ax ÷ By 0

must imply

w’P y
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It follows that the row vector

(0, wTP)

must be a linear combination of the rows of (A, B):

(0, wTp = ,T(A B)

or

A’ 0

= p_1BIZ

The pre—images of such w’s are the splines. Thus the set S of splines is given

by

U

s with u arbitrary and AT 0
P 181

Let us solve the problem (I) of section 6.4:

Given

x

z= 6V
y

find s & S such that

liz
— sll = minimum
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Using the above representation for s, as well as the definition of the inner

product in W, we get

fy
— p_18T)T p fy

— p_tgT,) minimum

subject to

A’Z 0

This problem is formally equivalent to an adjustment problem by parameters which

fulfill additional conditions. (Observations . .
.

y, parameters . . . , adjusted

observations p_t8T) conditions A’Z = 0).

Introducing the Lagrangean

= (y - PBT)T fy - ptT)
+ 2 ‘A’

we find

B P’B’ + A = B y

ATZ = 0

If we identify 1 B y and x, we arrive at the earlier equations. This

concludes the successful verification of the equivalence of problem (I) and

problem f II).
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7. Approximation with splines.

Li. Introduction. V

Frequently we want that our data are not exactly interpolated bLt only

approximated. Our spline functions shall not precisely match the data; there

will be residuals or discrepancies. Data may be distributed irregularly. In the

1—dimensional case we can design spline functions matching irregular data

exactly. However, even in the 1—dimensional case this is not always desirable.

The data may be noisy, and we want that our approximating functions filter out

some of the noise. In the two— or higher dimensional case it is virtually

impossible to interpolate irregular data by bi— or n—cubic splines.

7.2. Approximation in one dimension.

Let
k’k’

k1,. . .,N denote the data. This means that at the locations

function values
k

are prescribed. Let x., i=O,. . .,n denote the nodes of

the spline stx), i.e. the location of the discontinuities of its third

derivative. The x. generally do not coincide with the ç. Occasional coincidence

is, however, not excluded. Also the number of nodes n is typically less than N,

the number of data. Let y. denote the ordinates of the spline stx) at the

locations xi. The y. are now unknown. The approximating spline is parameterized

in terms of y. and y’, i=O,.. .,n. Thus we have 2n÷2 unknowns. The equations of

section 4.3, enforcing continuity of the second derivatives at x. , il, . . ,n—l,

represent a set of n—I constraints among x.,y. . Additional boundary constraints
7 1

at x0 and x may or may not be prescribed.
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The discrepancy v. —[‘r1—( )] may be linearly expressed in terms of y. ,y’

This can be done by means of the formula in section 4.2 giving the coefficients

(I 1÷1)
a as linear functions of y. ,y . Then one has:

(1,1+1) 1
v — Za

k k j:L k

The size of the discrepancies can be measured by their squared norm

2 N 2
Ilvil Z v

k=1 k

This expression can be minimized subject to the formulated constraints. We

obtain a mixed adjustment model. It is the model of variation of parameters with

additional constraints. It is a feasible way to obtain an approximating spline.

A better way is outlined in the next section.

7.3. Basis splines with local support.

This remarkable type of spline is already described in Schoenberg (1946). We

assume equidistant data with

x. i, itO,..
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We start with the function B(x) defined as fo]lows:

o . x—2

1 3
—fx+2) ... —2 x —I
6

—(x+2) —fx+I) .. . —1 x 0
6 6

=

—f—x÷2) — —f—x÷1) .. . 0 x 1
6 6

—f—x+2) ... 1 x2
6

0 ... 2x

Fig. 7.1 Basis spline B(x)
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The function Ef

is continuous.

outside a fini

x) is shown in figure 7.1, It is a spline.

The decisive property of B(x) is its local

te interval, namely the interval —2 x 2.

Its second derivative

support. It vanishes

We now add two auxiliary nodes of x = —1 and x n÷1. We associate with any
—1 n÷1

node x. , i=—1,O, . . . ,n,n+1, a basis spline 8(x) by shifting the function 8(x):

8(x) 8(x—x.) Btx—i),
7 7

We consider a linear combination of the basis splines

n.j
s(x) Z .B.(x)

i—1

We could have used the basis splines defined in section 4.8 for our

approximation procedure. Theoretically this is sound; practically, it is not.

The basis splines a.fx), 10,... ,n, tx), fx) introduced in section 4.8 do
1 0 fl

not have local support.

Obviously stx) is a spline. It is parameterized in terms of its coordinates .

with respect to the basis built up of the B.’s. (Splines with nodes x.,

i0,. . .,n, form an n+3—dimensional vector space. The 8., i—1,. . .,n+l, are a

basis. This basis is different from that one specified in section 4.8).

It becomes obvious that the use of basis splines removes the continuity

constraints for s ‘fx) from our problem. Least squares approximation may now be

done with respect to ., i—1,.. .,n÷1, in straightforward way.
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Consequently, the normal equations of the adjustment problem are not sparse. The

splines B Cx) have local support. Hence the normal equations are sparse and can

be solved much faster. (The computational effort is 0(n) versus 0{n3) in the

case of a full system). The basis splines of section 4.8 ate good for exact

interpolation. For approximation, the B.(x) are much better.

7.3. Two dimensions.

We assume a grid of wn square meshes of unit side length. The basic two—

dimensional spline is

Bfx,y) = 8(x) 8(y)

Fig. 7.2

Fig 7.2 shows this function. Acomplete basis is again obtained by shifting
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B.fx,y) Btx—i,y—j) Bfx—i) Bty—j)

,Tfl+1; j—1, . . . ,n÷1

Using these basis functions, a spline is represented as

rn÷1 n÷1
s(x,y) Z i. .8. .tx,y)

it—I j—1 7] 1]

The approximation problem with irregular data can be solved routinely. The

normal equations will be sparse. The computational effort to solve this system

is O{fnm)153 as opposed to O((nm)3) if basis functions not having a local

support are used.
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