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ABSTRACT

Within the ESA-funded project GOCE High-level Pro-
cessing Facility (HPF), several methods for determining
the Earth’s gravity field from GOCE mission data were
developed. In our approach to gravity field determina-
tion, the GOCE data are processed sequentially on a par-
allel computer system, iteratively via application of the
method of preconditioned conjugate gradient multiple ad-
justment (PCGMA), and in situ via development of the
functionals at the actual location and orientation of the
gradiometer. This approach has been implemented within
HPF as the so-called Tuning-machine in SPF6000. Its
main purpose is the adjustment of the unknown stochas-
tic model of the gradiometer observations, described by
decorrelation filters and weighting factors with respect to
the different observation groups (gradiometry and precise
orbit information).

GOCE gradiometry (SGG) data are auto-correlated in
their three components Vxx, Vyy and Vzz since the gra-
diometer measures most accurately and produces a flat
error spectrum only within a certain measurement band-
width within which it measures most accurately. From
simulations the typical features and the approximate
shape of the normalized spectral density function of the
gradiometer data are known approximately. Based on this
prior knowledge, a sequence of various AutoRegressive-
Moving Average (ARMA) filters is adjusted to the actual
measurement noise to remove these correlations from the
observations. This adjustment is refined iteratively, as it
is embedded in the estimation of the gravity field param-
eters and of the weighting factors. In this contribution
we show the effects of various filter complexities on the
final gravity field solution and the corresponding error es-
timates based on 71 days of real GOCE data.

Key words: GOCE; satellite gravity gradiometry; gravity
field determination; gradiometer noise modeling; ARMA
filters; decorrelation.

1. INTRODUCTION

As part of ESA’s High HPF (SPF6000), the Tuning-
machine (cf. [11], [5] and [17]) is responsible for the tun-
ing of the stochastic model of the gravity gradients ob-
served by GOCE’s gradiometer. Based on the resulting
gravity field models derived with the Tuning-machine,
the final solution of the so called time-wise approach
(cf. [11] and [12]) is computed at TU Graz. The Tuning-
machine has the large benefit, that the computation of
the full normal equation is avoided. The least squares
solution is found using an iterative solver based on the
method of preconditioned conjugate gradients (cf. [7],
[18], [14] and [4]). Thus the computation of the gravity
field from GOCE observations is very fast (2 hours on a
massive parallel computer cluster for two months of data
and spherical harmonic expansion up to degree and or-
der (d/o) 240). Nevertheless the full variance/covariance
matrix can only be computed via Monte-Carlo methods
(cf. [1] and [2]).

We developed a special set of ARMA filters, which are
well suited to model the noise of GOCE’s gradiometer
([14], [15], [16] and [19]). We will show the general
characteristics of the noise from the real data in Sect.
2. In Sec. 3 some filters estimated for the real data
are presented, and their effect on a gradiometer only
gravity field solution derived from GOCE measurements
and the corresponding accuracies as part of the full vari-
ance/covariance matrix is shown. Sec. 4 shows the com-
bination model determined within SPF6000 and the con-
sistency of the estimated gravity field in terms of spher-
ical harmonics. This contribution ends with a summary
and an outlook.

2. CHARACTERISTICS OF THE GRADIOME-
TER NOISE

To get a first idea of the sophisticated noise behavior of
GOCE’s gradiometer, Fig. 1 shows the measured gravity
gradients (in the gradiometer reference frame (GRF)) for
half a day and one component (i.e. Vzz). Additionally,
computed gravity field gradients, using the final GOCE
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Figure 1. Measured gravity field gradients of GOCE for
a half day and computed gravity field gradients from a
gravity field model and the difference as a first estimation
for the gradiometer noise

-1

-0.5

0

0.5

1

1.5

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00

V
z
z
(E

)

time on 01-Nov-2009

measured - GRS80 (mean reduced)
computed - GRS80 (mean reduced)

measured-computed (mean reduced)

Figure 2. Reduced (mean and GRS80) measured grav-
ity field gradients of GOCE for 3 hours and computed
gravity field gradients from a gravity field model and the
difference as a first estimation for the gradiometer noise

gravity field model (GO CONS EGM TIM 2I, cf. [12]),
are shown as timeseries. The differences of both time-
series, measured gradients minus computed gradients, are
an estimation for the gradiometer noise1. The timeseries
shown in Fig. 1 is dominated by the large bias in the mea-
sured gradients. Thus, in the displayed scale, the noise
looks only like a bias. Removing the GRS80 signal from
the measured and computed gradients and a mean value
from the observations gives a better impression of the de-
tailed structure of the measurement noise (cf. Fig. 2).
The resulting (i.e. mean reduced) noise estimation shows
now an additional drift2 and some long wavelength os-
cillations, indicating the strong autocorrelations. The re-
sulting noise is definitely non-white.

1Note that the three diagonal components Vxx, Vyy and Vzz show
very similar behavior, but only the Vzz component is shown here.

2The drift is hard to recognize in this short timeseries of about 3
hours.

Figure 3. Mean reduced noise estimation of the gra-
diometer for the Vzz component in the spatial domain.
It is dominated by a one per revolution error
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Figure 4. Error spectrum of the gradiometer noise for
the Vzz component, the gradient signal and the measured
gravity gradients

To get an idea of the spatial behavior, Fig. 3 shows the
mean-reduced gradiometer noise in the GRF for ascend-
ing and descending tracks. It is dominated by a one per
revolution oscillating error. These characteristics can be
shown in the spectral domain of the timeseries very well.
The power spectral density (i.e. the Fourier transform of
the autocorrelation function) from the noise timeseries,
the Earth’s gravity gradient signal (computed from a set
of spherical harmonics of a final GOCE solution) and the
measurements themselves for the Vzz can be seen in Fig.
43.

Analyzing Fig. 4, several characteristics of the estimated
gradiometer noise can be observed. Within the so-
called measurement bandwidth (MBW, between 0.005
and 0.1 Hz), the error spectrum is more or less flat, in
this bandwidth the noise is nearly white. Ranging from
0 to 0.005Hz the error spectrum is mainly characterized
by an inverse proportional dependence (approx. 1/f ) and
a large number of sharp peaks. This reflects exactly the
expected behavior, which could be seen in different case
studies before launch of the satellite (e.g. [16]).

3Note that all other components (Vxx and Vyy) have similar char-
acteristics, but the level of the noise differs in the MBW (i.e. ≈
8mE/

√
Hz for Vxx, 7mE/

√
Hz for Vyy and 12mE/

√
Hz for

Vzz).



When estimating the gravity field parameters via a rig-
orous least-squares adjustment, this correlation pattern
would normally have to be taken into account by includ-
ing the known (or an estimated approximation of the)
data covariance matrix (as a metric) into the normal equa-
tions. However, due to the huge number of SGG data, this
covariance matrix cannot be stored considering a mem-
ory requirement of more than 20 PetaByte. An effective
solution to this problem consists in a full decorrelation
(”whitening process”) of the SGG data before the evalu-
ation of the normal equations4 . Such a decorrelation can
be performed effectively through an application of digi-
tal filters to the SGG observations and the corresponding
observation equations (cf. [13], [14], [19] and [9]).

3. MODELING THE GRADIOMETER NOISE

After describing the main characteristics of the gradiome-
ter noise in the previous section, we will focus on the
modeling of the noise in the following subsections. As
the full variance/covariance matrix of the gradiometer
observations is even to large to be stored on supercom-
puters, the idea of describing the noise characteristics
by an ARMA process was developed in [13]. The in-
verse process, which can be seen as a digital filter, can be
used to decorrelate the observations and corresponding
functional model. The transformed observation equations
have white noise and are uncorrelated (e.g. [8], p. 154f.),
such that the least squares adjustment in the gravity field
determination can be performed with a covariance matrix
equaling the identity matrix.

To get a better understanding of the coherence between
digital filters and variance/covariance matrices, in [14] it
is shown how a digital ARMA filter can be transformed
to a variance/covariance matrix. To interpret the follow-
ing figures of the noise and the estimated decorrelation
filters in the spectral domain, remind that a filtering in
the time domain is an element by element multiplication
in the spectral domain. Thus, we need to find a filter with
a spectral behavior inverse to the spectral noise behavior
seen in Fig. 4. If we are able to find such a filter, the mul-
tiplication in the spectral domain would follow a curve
constantly equaling 1.0, which is the PSD of white noise.
Thus, we try to estimate a filter, which inverse PSD ap-
proximates the estimated PSD of the noise (cf. Fig. 4)
as good as possible, under the additional condition that it
can be described by as less as possible coefficients. Meth-
ods to estimate such filters of different complexity as cas-
cades of ARMA filters are explained in detail in e.g. [14]
and [19]. Within this contribution, we will not focus on
the technical side, but show the influence of filters mod-
eling the noise with different complexities.

4This means a complete decorrelation, as e.g. described in [8], p.
154f. of the observations and the functional model.
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Figure 6. Noise PSD ans PSD for the inverse filter 9295
(MBW band-pass filter). The figure is only shown for th
Vzz component. The other diagonal components have all
very similar characteristics.

3.1. Concentrating on the measurement bandwidth

A first idea could be, to apply a filter, which focuses on
the MBW, where the noise spectrum is flat and thus al-
ready close to white noise. Thus, a band-pass filter could
be used to filter the signal and the functional model to the
measurement bandwidth. An estimated (inverse) band-
pass filter can be seen in Fig. 6, designed for the gra-
diometer’s MBW, indicated by the black dashed lines.
Applying this filter to the observation equations of the
gradiometer measurements in the gravity field determi-
nation from gradiometer only observations, all informa-
tion below the MBW is omitted (long wavelength noise
but also parts of the signal). Thus, the high quality data
within the MBW are processed, but the information out-
side the MBW is ignored in the estimation process.

Gravity field determination with such a kind of filter is
possible – but has some disadvantages, as shown in the
following. A gradiometer only gravity field solution com-
puted with this filter is shown in terms coefficient dif-
ferences to the 7 years based GRACE only model ITG-
Grace2010s (cf. [10]) to the maximal resolution of the
GRACE field which is d/o 180. Fig. 5(a) shows that
the coefficient errors (i.e. coefficient differences to the
GRACE model) to d/o 50 are very large. Note that to d/o
120 the GRACE model can be seen as a kind of refer-
ence solution, as GRACE is more sensitive to the lower
degrees then the GOCE solution. The error per degree
decreases from d/o 50 to d/o 100 but is still very large to
d/o 100 for the sectorial coefficients5.

These quality characteristics of the sectorial and near sec-
torial coefficients are reflected by the estimated spherical
harmonic coefficient accuracies shown in Fig. 5(b). The
standard deviations show, that the sectorial coefficients to
degree 100 are bad determined as indicated in the coeffi-
cient differences to the ITG-Grace2010s model. The co-

5It should be mentioned in this context that intentionally a very mod-
erate band-pass filter was chosen, where the noise reduction in the stop-
band is only in the magnitude of 60 dB this avoids a singularity of the
SGG gravity field solution.
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(a) Coefficient differences of SGG only solution computed with the filter
9295 compared to ITG-Grace2010s.
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(b) Estimated formal coefficient accuracies of SGG only solution com-
puted with the filter 9295.
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(c) Coefficient differences of a SGG only solution computed with the filter
1000 compared to ITG-Grace2010s.
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(d) Estimated formal coefficient accuracies of a SGG only solution com-
puted with the filter 1000.
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(e) Coefficient differences of a SGG only solution computed with the filter
9024 compared to ITG-Grace2010s.
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(f) Estimated formal coefficient accuracies of a SGG only solution com-
puted with the filter 9024.
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(g) Coefficient differences of a SGG only solution computed with the filter
9025 compared to ITG-Grace2010s.
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(h) Estimated formal coefficient accuracies of a SGG only solution com-
puted with the filter 9025.

Figure 5. Coefficient statistics for all four presented SGG solutions with the four different filters. The shown statistics are
difference to the ITG-Grace2010s model (left column), estimated formal coefficient standard deviations (right column).
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Figure 7. Noise PSD ans PSD for the inverse filter 1000
(differentiation filter). The figure is only shown for th Vzz

component. The other components have all very similar
characteristics.

efficient differences compared to ITG-Grace2010s in the
lower degrees show an agreement to the estimated vari-
ances. In the degrees 80 to 150, the differences to the
GRACE model are well described by the corresponding
GOCE accuracies. The displayed high degrees are dom-
inated by the GRACE error, the GOCE variances show
that GOCE performs better starting from degree 150. The
high degrees 180-220, are not shown, as they cannot be
compared to the lower degree GRACE model.

Using a band-pass filter as shown in Fig. 6 produces a
useful gradiometer only gravity field and realistic esti-
mates for the coefficient variances, but has the disadvan-
tage that gradiometer information in the lower frequen-
cies is ignored and that effects the sectorial coefficients to
degree 1006. This can be more or less compensated when
combining the gradiometer observation with the GPS ob-
servations from GPS tracking (SST).

3.2. Modeling the long wavelength errors

As the band-pass filter produces systematic errors for
the sectorial coefficients, a further idea of the filter de-
sign would be to model the noise characteristics for the
low frequencies. Thus a filter could be estimated, which
down-weights the lower frequencies but keeps all infor-
mation starting from the MBW. This means, we do not fil-
ter out the long wavelengths completely, but model their
the poor quality in the adjustment. A very simple filter
could be a differentiation filter (ID 1000) as shown in
Fig. 7. These filter can be used to decorrelate the ob-
served gradients and start the gravity field determination
as a spherical harmonic series.

A comparison of a solution using this filter as stochastic
information for the gradients to GRACE is shown in Fig.
5(c). Obviously the lower degree coefficient differences

6Note that the better the band-pass filter approximates an ideal band-
pass filter the higher the degrees where the sectorial coefficients are
estimated bad. The effect of ill-defined sectorial coefficients would be
intensified with a higher noise reduction in the stop-band.
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Figure 8. Noise PSD ans PSD for the inverse filter 9024.
The figure is only shown for th Vzz component. The other
components have all very similar characteristics

to GRACE (to d/o 80) are smaller than for the band-pass
filter solution. The sectorial coefficients are determined
well starting from d/o 20. It can be seen clearly in the
variances, that the information outside the MBW contains
information especially for the sectorial coefficients. The
estimated accuracies in Fig. 5(d) show the better stabil-
ity of the sectorial coefficients. The quality of the solu-
tion gets better, but the estimated accuracies have a wrong
shape for the higher degrees (d/o 120+). The formal er-
rors for the low orders of higher degrees are estimated too
optimistic. This results from the incomplete modeling of
the filter of the MBW frequencies. The filter introduces
a weighting in the MBW which is not correct. Using the
information of the whole spectrum seems to be a good
idea, but a kind of mixture between the band-pass filter
model and this filter model needs to be found to combine
the advantages of both models.

3.3. Simple modeling of the complete spectrum

Combining simple filters to a consecutive filter series (so
call filter cascades) allow for the design of more complex
filters. A filter should be designed which approximates
the complete noise spectrum and not only parts of it, as
did by the models before. Thus, in Fig. 8 a filter was
designed modeling long wavelength errors as well as the
MBW as good as possible. The smallest number of filter
coefficients possible was used to keep the model simple.

The filter constitutes two cascades, one modeling the long
wavelength part (similar to filter 1000) and a second one,
an ARMA filter of a higher order modeling the high pass
filtered rest correlations in the context of a least squares
fit. Connecting both filter parts, the PSD plot in Fig. 8
shows the approximation of the noise. This filter with
ID 9024 needs only 50 AR and 50 MA coefficients per
gradiometer component to describe the whole noise be-
havior. Additionally it has only a short warmup (2000
positions will be lost as filter initialization). The result-
ing gravity field solution combines the advantages of the
band-pass filter solution and the difference filter solu-
tion. The solution is at least as good as the difference



10
−4

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

10
4

Frequency [Hz]

E
rr

or
 [m

E
/s

qr
t(

H
z)

]

zz

 

 

GOCE noise PSD
filter 9025

Figure 9. Noise PSD ans PSD for the inverse filter 1000.
The figure is only shown for th Vzz component. The other
components have all very similar characteristics

filter solution in all degrees (cf, Fig. 5(e)) as it shows
mainly the same difference pattern compared to ITG-
Grace2010s. The benefit of this modeling is visible in
the estimated spherical harmonic coefficient standard de-
viations. The higher degree error is modeled very well
by the estimated formal spherical harmonic coefficient er-
rors (cf. Fig. 5(f)), the shape of the errors shows a good
agreement for the errors compared to GRACE up to de-
gree 150.

3.4. Complex modeling of the complete spectrum

Analyzing the filter with the ID 9024 (cf. Fig. 8), it can
be seen that the n per revolution peaks in the spectrum
are not modeled individually. Instead, this pattern is ap-
proximated simple (it seems to be linear in the double
logarithmic plot). To improve the filter modeling, addi-
tional cascades could be added constituting special Notch
filters (e.g. [19]) eliminating special frequencies from the
signal. Thus, the filter is extended by several new filter
cascades, each eliminating one of the sharp peaks in the
spectrum. This filter (ID 9025) can be seen in Fig. 9.
It consists of 20 cascades with about 100 AR and 100
MA coefficients. The notch filter cascades, realized as
ARMA(2,2) filters, are responsible for a filter warmup of
200000 positions7. Computing a gradiometer-only grav-
ity field solution with this kind of filter, we see no im-
provement in the solution (cf. Fig 5(g)) compared to the
former model, but an improvement in the estimated vari-
ances is evident.

Comparing the coefficients estimated with filter 9024 and
9025 to the ITG-Grace2010s model coefficients, larger
errors can be seen in the lower degree coefficients with
the orders 16, 32, 48, 64. These are ill-defined coeffi-
cients due to the n per revolution error. Modeling these
error peaks within the complex filter, these bad deter-
mined coefficients are indicated in the estimated coeffi-
cient accuracies (cf. Fig 5(h)). Thus, modeling the fil-
ter as complex as possible, we map the error structure

7This means, using this filter in the gravity field determination,
200000 observations are thrown away during the filter initialization.

(b) Highpass filter

(a) unfiltered SGG errors (c) Highpass filtered errors

(d) Notch filters

(e) Notch filtered errors

(f) ARMA filter

(g) fully filtered errors

Figure 10. Effect of the different filter cascades in the
decorrelation process illustrated in the spectral domain

of the GOCE gradiometer as good as possible to the co-
efficient accuracies of the estimated spherical harmonic
expansion. Thus, we achieve a high quality and realistic
formal error variance/covariance matrix. The effect of all
cascades of this complex filter is summarized within Fig.
10.

4. COMBINATION WITH GPS OBSERVATIONS

Within SPF6000 the Tuning-machine is used to estimate
a decorrelation filter for the gradiometer observation for
the gravity field determination using the time wise ap-
proach amongst others. As the first GOCE gravity field
model is only based on 71 days of gradiometer observa-
tions, we decided to use the simple filter 9024 for the fi-
nal GO CONS EGM TIM 2I solution. The simple filter
model was preferred in order to keep the filter warmup
short within the first short data period (2000 instead of
200000). But these complex filters will be used in future
gravity field solutions, when the data period is longer and
thus the coverage is better. It was shown above, that the
filters are globally similar, but filter 9024 does not map
the ill-defined orders to the variance/covariance matrix.
At first, this seems to be uncritical, as this ill-defined or-
ders are mainly in the low degrees, which are determined
mainly by the GPS observations within the final solution.
But, a look into the details shows that inconsistencies be-
tween the data and the covariance modeling stresses the
combined solution. Modeling of the ill-defined orders in
the gradiometer covariances yields to a higher weight of
the GPS observations for this coefficients. This yields to
a better final solution after combining gradiometer and
GPS observations as the relative weights are more realis-
tic.

Fig. 11 shows a combined GOCE solution, a gradiometer
only solution (SGG) and a solution determined by GPS
tracking (SST) using the energy balance approach (e.g.
[3]). Fig. 11 shows an improvement of the combined so-
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lution from d/o 20 combining the SST only model with
the SGG observations. This shows, that a long wave-
length error modeling of the gradiometer noise is essen-
tial, if the best solution based on only GOCE observations
should be determined.

Comparing the final GO CONS EGM TIM 2I model to
independently determined gravity field models, the con-
sistence of the models in terms of degree variances can be
shown clearly. Fig. 12 shows the final SPF6000 solution
compared to the ITG-Grace2010s solution. Especially in
the lower degrees, the 7 year based GRACE model is bet-
ter than the GOCE only model based on just 71 days. The
degree variances estimated from coefficient differences
show a very good agreement with the estimated GOCE
model accuracies to d/o 120. Starting from d/o 120 the
GOCE solution becomes more accurate than the GRACE
solution. For the very high degrees 150 - 180, where
GOCE performs better, the GRACE accuracies show a
good agreement to the difference to the GOCE model.

Fig. 13 shows the final GO CONS EGM TIM 2I so-
lution compared to the EIGEN5C model (c.f. [6]),
which is a high degree combination model, including
e.g. GRACE, altimetry and terrestrial data. For the
low degrees (90) the combined model performs better
than GOCE, due to the included GRACE observations.
The estimated GOCE accuracies show again a consis-
tent compared to the error estimated from the coeffi-
cient differences. From degree 90 to 190, GOCE im-
proves the combined model, the accuracies of the com-
bined EIGEN5C model follow the difference curve, as
the GOCE accuracies are smaller. For the higher degrees
200+, the combined model performs better again, due to
the high frequency sensitive terrestrial data included in
the combination model.
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Figure 12. Degree variances estimated using coeffi-
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without the near zonal coefficients to exclude the ef-
fect of the polar gap. Shown is the combined final
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variances estimated from formal errors are shown as a
dashed line.
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Figure 13. Degree variances estimated using coef-
ficient differences to the EIGEN5C model computed
without the near zonal coefficients to exclude the ef-
fect of the polar gap. Shown is the combined final
WP6000 (GO CONS EGM TIM 2I) solution compared
to the model EIGEN5C. The degree variances estimated
from formal errors are shown as a dashed line.

5. SUMMARY AND CONCLUSIONS

The presented tuned decorrelation filters are used within
GOCE HPF SPF6000, determining a GOCE only gravity
field using the so-called time-wise approach. We showed
that we spent a huge numerical effort to determine digi-
tal filters, that can be used to decorrelate the GOCE gra-
dient observations for the purpose of gravity field deter-
mination. We showed that a modeling of the complete
error spectrum is essential to compute the best possible
gravity field from GOCE observations. In addition, the
full variance/covariance matrix will be distributed with
the final solution (cf. [12]). Compared to independent



models (ITG-Grace2010s and EIGEN5C) the estimated
formal accuracies show a consistent model. The pro-
vided variance/covariance matrix is of a very high qual-
ity, as it is modeled straight forward throughout all com-
putation steps of GOCE only gravity field determination
steps. As no external information is included in the solu-
tion, the solution and the variance/covariance matrix are
thus self-consistent. We recommend to use the full vari-
ance/covariance matrix in as many applications as possi-
ble, where the GOCE model is used. As can be seen in
comparison to independent models, the provided covari-
ance matrix reflects the true error characteristics of the
GOCE gravity field solution. With the coefficients and
the full variance/covariance matrix, indirectly the full set
of normal equations are available, which allows for the
use in combination models (e.g. with GRACE, altimetry
or terrestrial data).
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