Garcia, C., Männel, B., Glaser, S., & Bedford, J. (2025). A Pipeline to Explore Transient Signals in GNSS Data: A Preliminary Approach Applied to the Cascadia Subduction Margin. Springer Berlin Heidelberg. https://doi.org/10.1007/1345_2024_281
Dhar, S., Mammadaliyev, N., Heinkelmann, R., Glaser, S., Raut, S., Laha, A., Tiwari, A., Schuh, H., Dikshit, O., & Balasubramanian, N. (2024). The proposed plan of geodetic VLBI in India serving national and global objectives. Experimental Astronomy, 57(3), 22. https://doi.org/10.1007/s10686-024-09942-y
Neumayer, K. H., Schreiner, P., König, R., Dahle, C., Glaser, S., Mammadaliyev, N., & Flechtner, F. (2024). EPOS-OC, a Universal Software Tool for Satellite Geodesy at GFZ. Springer Berlin Heidelberg. https://doi.org/10.1007/1345_2024_260
Neyers, C., & Brockmann, J. M. (2024). Radial surface currents from space: An opportunity for mean dynamic topography estimation? Advances in Space Research, 74(4), 1563–1575. https://doi.org/10.1016/j.asr.2024.05.041
Schreiner, P., Glaser, S., König, R., Neumayer, K. H., Raut, S., & Schuh, H. (2024). On the Potential of Accelerometers for GNSS on Satellite Positioning and Ensuing Reference Frame Determination. Springer Berlin Heidelberg. https://doi.org/10.1007/1345_2024_270
Borlinghaus, M., Neyers, C., & Brockmann, J. M. (2023). Development of a continuous spatiotemporal finite element-based representation of the mean sea surface. Journal of Geodesy, 97(2), 16. https://doi.org/10.1007/s00190-023-01709-1
Borlinghaus, M., Neyers, C., & Brockmann, J. M. (2023). Refinement of Spatio-Temporal Finite Element Spaces for Mean Sea Surface and Sea Level Anomaly Estimation. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 119–128). Springer International Publishing. https://doi.org/10.1007/1345_2023_205
Brockmann, J. M., Borlinghaus, M., Neyers, C., & Schuh, W.-D. (2023). On the Coestimation of Long-Term Spatio-Temporal Signals to Reduce the Aliasing Effect in Parametric Geodetic Mean Dynamic Topography Estimation. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 129–137). Springer International Publishing. https://doi.org/10.1007/1345_2023_224
Delva, P., Altamimi, Z., Blazquez, A., Blossfeld, M., Böhm, J., Bonnefond, P., Boy, J.-P., Bruinsma, S., Bury, G., Chatzinikos, M., Couhert, A., Courde, C., Dach, R., Dehant, V., Dell’Agnello, S., Elgered, G., Enderle, W., Exertier, P., Glaser, S., … Zajdel, R. (2023). GENESIS: co-location of geodetic techniques in space. Earth, Planets and Space, 75(1), 5. https://doi.org/10.1186/s40623-022-01752-w
Dhar, S., Glaser, S., Heinkelmann, R., Schuh, H., Balasubramanian, N., & Dikshit, O. (2023). Favorable locations for new VGOS antennas in India depending on the assessment of geodetic parameters and environmental factors. Earth, Planets and Space, 75(1), 47. https://doi.org/10.1186/s40623-023-01794-8
Korte, J., Brockmann, J. M., & Schuh, W.-D. (2023). A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process. Engineering Proceedings, 39(1), Article 1. https://doi.org/10.3390/engproc2023039090
Korte, J., Schubert, T., Brockmann, J. M., & Schuh, W.-D. (2023). On the Estimation of Time Varying AR Processes. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 113–118). Springer International Publishing. https://doi.org/10.1007/1345_2023_188
Küreç Nehbit, P., Glaser, S., Sakic, P., Balidakis, K., Heinkelmann, R., Schuh, H., & Konak, H. (2023). On the improvement of the sensitivity levels of VLBI solutions from a combination with GNSS. Advances in Space Research, 72(8), 3037–3047. https://doi.org/10.1016/j.asr.2023.06.021
Männel, B., Brandt, A., Glaser, S., & Schuh, H. (2023). Correcting Non-Tidal Surface Loading in GNSS repro3 and Comparison with ITRF2020. Springer Berlin Heidelberg. https://doi.org/10.1007/1345_2023_207
Pollet, A., Coulot, D., Biancale, R., Pérosanz, F., Loyer, S., Marty, J.-C., Glaser, S., Schott-Guilmault, V., Lemoine, J.-M., Mercier, F., Nahmani, S., & Mandea, M. (2023). GRGS numerical simulations for a GRASP-like mission. Journal of Geodesy, 97(5), 45. https://doi.org/10.1007/s00190-023-01730-4
Raut, S., Glaser, S., Mammadaliyev, N., Schreiner, P., Neumayer, K. H., & Schuh, H. (2023). Assessing the Potential of VLBI Transmitters on Next Generation GNSS Satellites for Geodetic Products. Springer Berlin Heidelberg. https://doi.org/10.1007/1345_2023_217
Schreiner, P., König, R., Neumayer, K. H., & Reinhold, A. (2023). On precise orbit determination based on DORIS, GPS and SLR using Sentinel-3A/B and -6A and subsequent reference frame determination based on DORIS-only. Advances in Space Research, 72(1), 47–64. https://doi.org/10.1016/j.asr.2023.04.002
Schubert, T., & Schuh, W.-D. (2023). A Flexible Family of Compactly Supported Covariance Functions Based on Cutoff Polynomials. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 139–147). Springer International Publishing. https://doi.org/10.1007/1345_2023_200
Schuh, W.-D., Korte, J., Schubert, T., & Brockmann, J. M. (2023). Modeling of Inhomogeneous Spatio-Temporal Signals by Least Squares Collocation. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 149–158). Springer International Publishing. https://doi.org/10.1007/1345_2023_202
Borlinghaus, M., Neyers, C., & Brockmann, J. M. (2022). Towards the Development of a Continuous Spatio-Temporal Finite Element Based Representation of the Mean Sea Surface (Technical Report No. IGG-TG-2022-01; Technical Reports of the Theoretical Geodesy Group). University of Bonn, Institute of Geodesy and Geoinformation. https://hdl.handle.net/20.500.11811/9592
Wang, J., Ge, M., Glaser, S., Balidakis, K., Heinkelmann, R., & Schuh, H. (2022). Impact of Tropospheric Ties on UT1‐UTC in GNSS and VLBI Integrated Solution of Intensive Sessions. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB025228. https://doi.org/10.1029/2022JB025228
Wang, J., Ge, M., Glaser, S., Balidakis, K., Heinkelmann, R., & Schuh, H. (2022). Improving VLBI analysis by tropospheric ties in GNSS and VLBI integrated processing. Journal of Geodesy, 96(4), 32. https://doi.org/10.1007/s00190-022-01615-y
Brockmann, J. M., Schubert, T., & Schuh, W.-D. (2021). An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data. Surveys in Geophysics, 42(2), 277–316. https://doi.org/10.1007/s10712-020-09626-0
König, R., Reinhold, A., Dobslaw, H., Esselborn, S., Neumayer, K. H., Dill, R., & Michalak, A. (2021). On the effect of non-tidal atmospheric and oceanic loading on the orbits of the altimetry satellites ENVISAT, Jason-1 and Jason-2. Advances in Space Research, 68(2), 1048–1058. https://doi.org/10.1016/j.asr.2020.05.047
Korte, J., Schubert, T., Brockmann, J. M., & Schuh, W.-D. (2021). A Mathematical Investigation of a Continuous Covariance Function Fitting with Discrete Covariances of an AR Process. Engineering Proceedings, 5(1), Article 1. https://doi.org/10.3390/engproc2021005018
Kvas, A., Brockmann, J. M., Krauss, S., Schubert, T., Gruber, T., Meyer, U., Mayer-Gürr, T., Schuh, W.-D., Jäggi, A., & Pail, R. (2021). GOCO06s – a satellite-only global gravity field model. Earth System Science Data, 13(1), 99–118. https://doi.org/https://doi.org/10.5194/essd-13-99-2021
Männel, B., Zus, F., Dick, G., Glaser, S., Semmling, M., Balidakis, K., Wickert, J., Maturilli, M., Dahlke, S., & Schuh, H. (2021). GNSS-based water vapor estimation and validation during the MOSAiC expedition. Atmospheric Measurement Techniques, 14(7), 5127–5138. https://doi.org/10.5194/amt-14-5127-2021
Michalak, G., Glaser, S., Neumayer, K. H., & König, R. (2021). Precise orbit and Earth parameter determination supported by LEO satellites, inter-satellite links and synchronized clocks of a future GNSS. Advances in Space Research, 68(12), 4753–4782. https://doi.org/10.1016/j.asr.2021.03.008
Schubert, T., Brockmann, J. M., Korte, J., & Schuh, W.-D. (2021). On the Family of Covariance Functions Based on ARMA Models. Engineering Proceedings, 5(1), 37. https://doi.org/10.3390/engproc2021005037
Schubert, T., Brockmann, J. M., & Schuh, W.-D. (2021). Identification of Suspicious Data for Robust Estimation of Stochastic Processes. In P. Novák, M. Crespi, N. Sneeuw, & F. Sansò (Eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy (pp. 199–207). Springer International Publishing. https://doi.org/10.1007/1345_2019_80
Schuh, H., Heinkelmann, R., Beyerle, G., Anderson, J. M., Balidakis, K., Belda, S., Dhar, S., Glaser, S., Jenie, O. S., Karbon, M., Kitpracha, C., Küreç Nehbit, P., Liu, L., Lunz, S., Mammadaliyev, N., Modiri, S., Nilsson, T. J., Raut, S., Soja, B., … Xu, M. H. (2021). The Potsdam Open Source Radio Interferometry Tool (PORT). Publications of the Astronomical Society of the Pacific, 133(1028), 104503. https://doi.org/10.1088/1538-3873/ac299c
Glaser, S., Michalak, G., Männel, B., König, R., Neumayer, K. H., & Schuh, H. (2020). Reference system origin and scale realization within the future GNSS constellation “Kepler.” Journal of Geodesy, 94(12), 117. https://doi.org/10.1007/s00190-020-01441-0
Glaser, S., Schuh, H., & König, R. (2020). Simulation globaler terrestrischer Referenzrahmen für das Globale Geodätische Beobachtungssystem GGOS. ZfV - Zeitschrift für Geodäsie, Geoinformation und Landmanagement, zfv 4/2020. https://doi.org/10.12902/zfv-0308-2020
Kargoll, B., Kermarrec, G., Korte, J., & Alkhatib, H. (2020). Self-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors. Journal of Geodesy, 94(5), 51. https://doi.org/10.1007/s00190-020-01376-6
Küreç Nehbit, P., Heinkelmann, R., Schuh, H., Glaser, S., Lunz, S., Mammadaliyev, N., Balidakis, K., Konak, H., & Tanır Kayıkçı, E. (2020). Evaluation of VLBI Observations with Sensitivity and Robustness Analyses. Mathematics, 8(6), 939. https://doi.org/10.3390/math8060939
Schubert, T., Korte, J., Brockmann, J. M., & Schuh, W.-D. (2020). A Generic Approach to Covariance Function Estimation Using ARMA-Models. Mathematics, 8(4), 591. https://doi.org/10.3390/math8040591
Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., König, R., & Publikationen aller GRACE-unterstützten Projekte, D. G. (2019). GRACE-FO D-103919 (Gravity Recovery and Climate Experiment Follow-On): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, June 3, 2019). https://doi.org/10.2312/GFZ.b103-19098
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K. H., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., & Förste, C. (2019). The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sensing, 11(18), 2116. https://doi.org/10.3390/rs11182116
Giorgi, G., Schmidt, T. D., Trainotti, C., Mata-Calvo, R., Fuchs, C., Hoque, M. M., Berdermann, J., Furthner, J., Günther, C., Schuldt, T., Sanjuan, J., Gohlke, M., Oswald, M., Braxmaier, C., Balidakis, K., Dick, G., Flechtner, F., Ge, M., Glaser, S., … Schuh, H. (2019). Advanced technologies for satellite navigation and geodesy. Advances in Space Research, 64(6), 1256–1273. https://doi.org/10.1016/j.asr.2019.06.010
Glaser, S., König, R., Neumayer, K. H., Balidakis, K., & Schuh, H. (2019). Future SLR station networks in the framework of simulated multi-technique terrestrial reference frames. Journal of Geodesy, 93(11), 2275–2291. https://doi.org/10.1007/s00190-019-01256-8
Glaser, S., König, R., Neumayer, K. H., Nilsson, T., Heinkelmann, R., Flechtner, F., & Schuh, H. (2019). On the impact of local ties on the datum realization of global terrestrial reference frames. Journal of Geodesy, 93(5), 655–667. https://doi.org/10.1007/s00190-018-1189-0
König, R., Glaser, S., Ciufolini, I., & Paolozzi, A. (2019). Impacts of the LARES and LARES-2 Satellite Missions on the SLR Terrestrial Reference Frame. In P. Novák, M. Crespi, N. Sneeuw, & F. Sansò (Eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy (Vol. 151, pp. 57–65). Springer International Publishing. https://doi.org/10.1007/1345_2019_84
Männel, B., Dobslaw, H., Dill, R., Glaser, S., Balidakis, K., Thomas, M., & Schuh, H. (2019). Correcting surface loading at the observation level: impact on global GNSS and VLBI station networks. Journal of Geodesy, 93(10), 2003–2017. https://doi.org/10.1007/s00190-019-01298-y
Anderson, J. M., Beyerle, G., Glaser, S., Liu, L., Männel, B., Nilsson, T., Heinkelmann, R., & Schuh, H. (2018). Simulations of VLBI observations of a geodetic satellite providing co-location in space. Journal of Geodesy, 92(9), 1023–1046. https://doi.org/10.1007/s00190-018-1115-5
Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., & König, R. (2018). GRACE 327-743 (Gravity Recovery and Climate Experiment) : GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018). https://doi.org/10.2312/GFZ.b103-18048
Männel, B., Thaller, D., Rothacher, M., Böhm, J., Müller, J., Glaser, S., Dach, R., Biancale, R., Bloßfeld, M., Kehm, A., Pinzón, I. H., Hofmann, F., Andritsch, F., Coulot, D., & Pollet, A. (2018). Recent Activities of the GGOS Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO). In J. T. Freymueller & L. Sánchez (Eds.), International Symposium on Advancing Geodesy in a Changing World (Vol. 149, pp. 161–164). Springer International Publishing. https://doi.org/10.1007/1345_2018_30
Schuh, W.-D., & Brockmann, J. M. (2018). The Numerical Treatment of Covariance Stationary Processes in Least Squares Collocation. In W. Freeden & R. Rummel (Eds.), Handbuch der Geodäsie: 6 Bände (pp. 1–36). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_95-1
Soja, B., Gross, R. S., Abbondanza, C., Chin, T. M., Heflin, M. B., Parker, J. W., Wu, X., Nilsson, T., Glaser, S., Balidakis, K., Heinkelmann, R., & Schuh, H. (2018). On the long-term stability of terrestrial reference frame solutions based on Kalman filtering. Journal of Geodesy, 92(9), 1063–1077. https://doi.org/10.1007/s00190-018-1160-0
Brockmann, J. M., Zehentner, N., Schuh, W.-D., & Mayer-Guerr, T. (2017). Studies on the potential of reprocessing campaign of the GOCE observations inline with the time-wise method. Institute of Geodesy and Geoinformation, Department of Theoretical Geodesy, University Bonn.
Glaser, S., König, R., Ampatzidis, D., Nilsson, T., Heinkelmann, R., Flechtner, F., & Schuh, H. (2017). A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS. Journal of Geodesy, 91(7), 723–733. https://doi.org/10.1007/s00190-017-1021-2
Schuh, W.-D., & Korte, J. (2017). Über die Genauigkeit von Schätzern für den Skalenparameter der Verteilungsfunktion. Allgemeine Vermessungs-Nachrichten (AVN), 6, 186–196. http://skylab.itg.uni-bonn.de/schuh/Separata/schuh-korte_17.pdf
Ampatzidis, D., König, R., Glaser, S., & Schuh, H. (2016). The Assessment of the Temporal Evolution of Space Geodetic Terrestrial Reference Frames. In J. T. Freymueller & L. Sánchez (Eds.), International Symposium on Earth and Environmental Sciences for Future Generations (Vol. 147, pp. 11–15). Springer International Publishing. https://doi.org/10.1007/1345_2016_251
Brockmann, J. M., & Schuh, W.-D. (2016). Computational aspects of high-resolution global gravity dield determination - numbering schemes and reodering. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC Symposium, Proceedings (pp. 309–317). Schriftenreihe des Forschungszentrums Jülich.
Glaser, S., Ampatzidis, D., König, R., Nilsson, T., Heinkelmann, R., Flechtner, F., & Schuh, H. (2016). Simulation of VLBI Observations to Determine a Global TRF for GGOS. In J. T. Freymueller & L. Sánchez (Eds.), International Symposium on Earth and Environmental Sciences for Future Generations (Vol. 147, pp. 3–9). Springer International Publishing. https://doi.org/10.1007/1345_2016_256
Koch, K.-R., & Brockmann, J. M. (2016). Systematic Effects in Laser Scanning and Visualization by Confidence Regions. Journal of Applied Geodesy, 10(4), 247–257. https://doi.org/10.1515/jag-2016-0012
Soja, B., Nilsson, T., Balidakis, K., Glaser, S., Heinkelmann, R., & Schuh, H. (2016). Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data. Journal of Geodesy, 90(12), 1311–1327. https://doi.org/10.1007/s00190-016-0924-7
Soja, B., Nilsson, T., Balidakis, K., Glaser, S., Heinkelmann, R., & Schuh, H. (2016). Erratum to: Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data. Journal of Geodesy, 90(12), 1329–1329. https://doi.org/10.1007/s00190-016-0953-2
Glaser, S., Fritsche, M., Sośnica, K., Rodríguez-Solano, C. J., Wang, K., Dach, R., Hugentobler, U., Rothacher, M., & Dietrich, R. (2015). A consistent combination of GNSS and SLR with minimum constraints. Journal of Geodesy, 89(12), 1165–1180. https://doi.org/10.1007/s00190-015-0842-0
Glaser, S., Fritsche, M., Sośnica, K., Rodríguez-Solano, C. J., Wang, K., Dach, R., Hugentobler, U., Rothacher, M., & Dietrich, R. (2015). Erratum to: A consistent combination of GNSS and SLR with minimum constraints. Journal of Geodesy, 89(12), 1181–1182. https://doi.org/10.1007/s00190-015-0853-x
Glaser, S., Fritsche, M., Sośnica, K., Rodríguez-Solano, C. J., Wang, K., Dach, R., Hugentobler, U., Rothacher, M., & Dietrich, R. (2015). Validation of Components of Local Ties. In T. Van Dam (Ed.), REFAG 2014 (Vol. 146, pp. 21–28). Springer International Publishing. https://doi.org/10.1007/1345_2015_190
Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., & Schuh, H. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89(9), 843–856. https://doi.org/10.1007/s00190-015-0818-0
Schuh, H., König, R., Ampatzidis, D., Glaser, S., Flechtner, F., Heinkelmann, R., & Nilsson, T. J. (2015). GGOS-SIM: Simulation of the Reference Frame for the Global Geodetic Observing System. In T. Van Dam (Ed.), REFAG 2014 (Vol. 146, pp. 95–100). Springer International Publishing. https://doi.org/10.1007/1345_2015_217
Schuh, W.-D., Müller, S., & Brockmann, J. M. (2015). Completion of band-limited data sets on the sphere. In H. Kutterer, F. Seitz, H. Alkhatib, & M. Schmidt (Eds.), The 1st International Workshop on the Quality of Geodetic Observations and Monitoring Systems (QuGOMS’11), IAG Symposia (Vol. 140, pp. 171–178). Springer.
Becker, S., Brockmann, J. M., & Schuh, W.-D. (2014). Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry. Geophysical Research Letters, 41(6), 2063–2069. https://doi.org/10.1002/2014GL059510
Becker, S., Losch, M., Brockmann, J. M., Freiwald, G., & Schuh, W.-D. (2014). A tailored computation of the mean dynamic topography for a consistent integration into ocean circulation models. Surveys in Geophysics, 35(6), 1507–1525. https://doi.org/10.1007/s10712-013-9272-9
Brockmann, J. M. (2014). On High Performance Computing in Geodesy -- Applications in Global Gravity Field Determination [Phdthesis, Rheinischen Friedrich-Wilhelms-Universität Bonn]. http://nbn-resolving.de/urn:nbn:de:hbz:5n-38608
Brockmann, J. M., Roese-Koerner, L., & Schuh, W.-D. (2014). A concept for the estimation of high-degree gravity field models in a high performance computing environment. Studia Geophysica et Geodaetica, 58(4), 571–594. https://doi.org/10.1007/s11200-013-1246-3
Brockmann, J. M., Roese-Koerner, L., & Schuh, W.-D. (2014). Use of High Performance Computing for the Rigorous Estimation of Very High Degree Spherical Harmonic Gravity Field Models. In U. Marti (Ed.), Gravity, Geoid and Height Systems (GGHS 2012), IAG Symposia (Vol. 141, pp. 27–33). Springer.
Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., & Schuh, W.-D. (2014). EGM_TIM_RL05: An independent Geoid with Centimeter Accuracy purely based on the GOCE Mission. Geophysical Research Letters, 41(22), 8089–8099. https://doi.org/10.1002/2014GL061904
Krasbutter, I., Brockmann, J. M., Kargoll, B., & Schuh, W.-D. (2014). Adjustment of digital filters for decorrelation of GOCE SGG data. In F. Flechtner, N. Sneeuw, & W.-D. Schuh (Eds.), Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions. (Vol. 20, pp. 109–114). Springer.
Müller, S., Brockmann, J. M., & Schuh, W.-D. (2014). Consistent Combination of Gravity Field, Altimetry and Hydrographic Data. In U. Marti (Ed.), Gravity, Geoid and Height Systems (GGHS 2012), IAG Symposia (Vol. 141, pp. 267–273). Springer.
Pail, R., Albertella, A., Rieser, D., Brockmann, J. M., Schuh, W.-D., & Savcenko, R. (2014). Satellite Gravity Models and Their Use for Estimating Mean Ocean Circulation. In C. Rizos & P. Willis (Eds.), Earth on the Edge: Science for a Sustainable Planet, IAG Symposia (Vol. 139, pp. 275–281). Springer.
Brockmann, J. M., & Kargoll, B. (2012). Uncertainty assessment of some data-adaptive M-estimators. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VII. Hotine-Marussi-Symposium, IAG Symposia (Vol. 137, pp. 87–92). Springer.
Koch, K. R., Brockmann, J. M., & Schuh, W.-D. (2012). Optimal regularization for geopotential model GOCO02S by Monte Carlo methods and multi-scale representation of density anomalies. Journal of Geodesy, 86, 647–660. https://doi.org/10.1007/s00190-012-0546-7
Brockmann, J., & Schuh, W.-D. (2011). Use of Massive Parallel Computing Libraries in the Context of Global Gravity Field Determination from Satellite Data. In L. Ouwehand (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X.
Krasbutter, I., Brockmann, J. M., Goiginger, H., Kargoll, B., Pail, R., & Schuh, W.-D. (2011). Refinement of the stochastic model of GOCE scientific data in along time series. In L. Ouwehand (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X.
Pail, R., Bruinsma, S., Miggliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansó, F., & Tscherning, C. C. (2011). First GOCE gravity field models derived by three different approaches. J Geodesy, 85(11), 819–843. https://doi.org/10.1007/s00190-011-0467-x
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., Rieser, D., Hausleitner, W., Maier, A., Krauss, S., Baur, O., Krasbutter, I., & Gruber, T. (2011). Combination of GOCE data with complementary gravity field information. In O. L (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X.
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., Mayrhofer, R., Krasbutter, I., & Mayer-Gürr, T. (2011). GOCE-only gravity field models derived from 8 months of GOCE data. In O. L (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X. http://www.spacebooks-online.com/product_info.php?cPath=104&products_id=17254
Brockmann, J. M., Kargoll, B., Krasbutter, I., Schuh, W.-D., & Wermuth, M. (2010). GOCE Data Analysis: From Calibrated Measurements to the Global Earth Gravity Field. In F. Flechtner, M. Mandea, T. Gruber, M. Rothacher, J. Wickert, & A. Güntner (Eds.), System Earth via Geodetic-Geophysical Space Techniques (pp. 213–229). Springer. http://www.springer.com/gp/book/9783642102271#
Brockmann, J. M., & Schuh, W.-D. (2010). Fast Variance Component Estimation in GOCE Data Processing. In S. P. Mertikas (Ed.), Gravity, Geoid and Earth Observation (pp. 185–193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_25
Krasbutter, I., Brockmann, J. M., Kargoll, B., & Schuh, W.-D. (2010). Stochastic model refinements for GOCE gradiometry data. BMBF Geotechnologien Science Report, 17, 70–76.
Pail, R., Goiginger, H., Mayerhofer, R., Schuh, W.-D., Brockmann, J. M., Krasbutter, I., Höck, E., & Fecher, T. (2010). GOCE gravity field model derived from orbit and gradiometry data applying the time-wise approach. In H. Lacoste-Francis (Ed.), ESA Living Planet Symposium Bergen, Proceedings. ESA-SP-686, ESA/ESTEC, ISBN (Online) 978-92-9221-250-6 ISSN 1609-042X.
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., & Gruber, T. (2010). Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314. https://doi.org/10.1029/2010GL044906
Schuh, W.-D., Brockmann, J. M., Kargoll, B., & Krasbutter, I. (2010). Adaptive Optimization of GOCE Gravity Field Modeling. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC Symposium, Proceedings (Vol. 3, pp. 313–320). Schriftenreihe des Forschungszentrums Jülich.
Schuh, W.-D., Brockmann, J. M., Krasbutter, I., & Pail, R. (2010). Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In H. Lacoste-Francis (Ed.), ESA Living Planet Symposium Bergen, Proceedings. ESA-SP-686, ESA/ESTEC, ISBN (Online) 978-92-9221-250-6 ISSN 1609-042X.
Brockmann, J. M., Kargoll, B., Krasbutter, I., Schuh, W.-D., & Wermuth, M. (2009). GOCE Data Analysis: From Calibrated Measurements to the Global Earth Gravity Field Observation of the Earth System from Space. Springer (Accepted).