Neyers, C., & Brockmann, J. M. (2024). Radial surface currents from space: An opportunity for mean dynamic topography estimation? Advances in Space Research, 74(4), 1563–1575. https://doi.org/10.1016/j.asr.2024.05.041
Borlinghaus, M., Neyers, C., & Brockmann, J. M. (2023). Development of a continuous spatiotemporal finite element-based representation of the mean sea surface. Journal of Geodesy, 97(2), 16. https://doi.org/10.1007/s00190-023-01709-1
Borlinghaus, M., Neyers, C., & Brockmann, J. M. (2023). Refinement of Spatio-Temporal Finite Element Spaces for Mean Sea Surface and Sea Level Anomaly Estimation. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 119–128). Springer International Publishing. https://doi.org/10.1007/1345_2023_205
Brockmann, J. M., Borlinghaus, M., Neyers, C., & Schuh, W.-D. (2023). On the Coestimation of Long-Term Spatio-Temporal Signals to Reduce the Aliasing Effect in Parametric Geodetic Mean Dynamic Topography Estimation. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 129–137). Springer International Publishing. https://doi.org/10.1007/1345_2023_224
Korte, J., Brockmann, J. M., & Schuh, W.-D. (2023). A Comparison between Successive Estimate of TVAR(1) and TVAR(2) and the Estimate of a TVAR(3) Process. Engineering Proceedings, 39(1), Article 1. https://doi.org/10.3390/engproc2023039090
Korte, J., Schubert, T., Brockmann, J. M., & Schuh, W.-D. (2023). On the Estimation of Time Varying AR Processes. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 113–118). Springer International Publishing. https://doi.org/10.1007/1345_2023_188
Schuh, W.-D., Korte, J., Schubert, T., & Brockmann, J. M. (2023). Modeling of Inhomogeneous Spatio-Temporal Signals by Least Squares Collocation. In J. T. Freymueller & L. Sánchez (Eds.), X Hotine-Marussi Symposium on Mathematical Geodesy (pp. 149–158). Springer International Publishing. https://doi.org/10.1007/1345_2023_202
Borlinghaus, M., Neyers, C., & Brockmann, J. M. (2022). Towards the Development of a Continuous Spatio-Temporal Finite Element Based Representation of the Mean Sea Surface (Technical Report No. IGG-TG-2022-01; Technical Reports of the Theoretical Geodesy Group). University of Bonn, Institute of Geodesy and Geoinformation. https://hdl.handle.net/20.500.11811/9592
Brockmann, J. M., Schubert, T., & Schuh, W.-D. (2021). An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data. Surveys in Geophysics, 42(2), 277–316. https://doi.org/10.1007/s10712-020-09626-0
Korte, J., Schubert, T., Brockmann, J. M., & Schuh, W.-D. (2021). A Mathematical Investigation of a Continuous Covariance Function Fitting with Discrete Covariances of an AR Process. Engineering Proceedings, 5(1), Article 1. https://doi.org/10.3390/engproc2021005018
Kvas, A., Brockmann, J. M., Krauss, S., Schubert, T., Gruber, T., Meyer, U., Mayer-Gürr, T., Schuh, W.-D., Jäggi, A., & Pail, R. (2021). GOCO06s – a satellite-only global gravity field model. Earth System Science Data, 13(1), 99–118. https://doi.org/https://doi.org/10.5194/essd-13-99-2021
Schubert, T., Brockmann, J. M., Korte, J., & Schuh, W.-D. (2021). On the Family of Covariance Functions Based on ARMA Models. Engineering Proceedings, 5(1), 37. https://doi.org/10.3390/engproc2021005037
Schubert, T., Brockmann, J. M., & Schuh, W.-D. (2021). Identification of Suspicious Data for Robust Estimation of Stochastic Processes. In P. Novák, M. Crespi, N. Sneeuw, & F. Sansò (Eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy (pp. 199–207). Springer International Publishing. https://doi.org/10.1007/1345_2019_80
Schubert, T., Korte, J., Brockmann, J. M., & Schuh, W.-D. (2020). A Generic Approach to Covariance Function Estimation Using ARMA-Models. Mathematics, 8(4), 591. https://doi.org/10.3390/math8040591
Schuh, W.-D., & Brockmann, J. M. (2018). The Numerical Treatment of Covariance Stationary Processes in Least Squares Collocation. In W. Freeden & R. Rummel (Eds.), Handbuch der Geodäsie: 6 Bände (pp. 1–36). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_95-1
Brockmann, J. M., Zehentner, N., Schuh, W.-D., & Mayer-Guerr, T. (2017). Studies on the potential of reprocessing campaign of the GOCE observations inline with the time-wise method. Institute of Geodesy and Geoinformation, Department of Theoretical Geodesy, University Bonn.
Brockmann, J. M., & Schuh, W.-D. (2016). Computational aspects of high-resolution global gravity dield determination - numbering schemes and reodering. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC Symposium, Proceedings (pp. 309–317). Schriftenreihe des Forschungszentrums Jülich.
Koch, K.-R., & Brockmann, J. M. (2016). Systematic Effects in Laser Scanning and Visualization by Confidence Regions. Journal of Applied Geodesy, 10(4), 247–257. https://doi.org/10.1515/jag-2016-0012
Schuh, W.-D., Müller, S., & Brockmann, J. M. (2015). Completion of band-limited data sets on the sphere. In H. Kutterer, F. Seitz, H. Alkhatib, & M. Schmidt (Eds.), The 1st International Workshop on the Quality of Geodetic Observations and Monitoring Systems (QuGOMS’11), IAG Symposia (Vol. 140, pp. 171–178). Springer.
Becker, S., Brockmann, J. M., & Schuh, W.-D. (2014). Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry. Geophysical Research Letters, 41(6), 2063–2069. https://doi.org/10.1002/2014GL059510
Becker, S., Losch, M., Brockmann, J. M., Freiwald, G., & Schuh, W.-D. (2014). A tailored computation of the mean dynamic topography for a consistent integration into ocean circulation models. Surveys in Geophysics, 35(6), 1507–1525. https://doi.org/10.1007/s10712-013-9272-9
Brockmann, J. M. (2014). On High Performance Computing in Geodesy -- Applications in Global Gravity Field Determination [Phdthesis, Rheinischen Friedrich-Wilhelms-Universität Bonn]. http://nbn-resolving.de/urn:nbn:de:hbz:5n-38608
Brockmann, J. M., Roese-Koerner, L., & Schuh, W.-D. (2014). A concept for the estimation of high-degree gravity field models in a high performance computing environment. Studia Geophysica et Geodaetica, 58(4), 571–594. https://doi.org/10.1007/s11200-013-1246-3
Brockmann, J. M., Roese-Koerner, L., & Schuh, W.-D. (2014). Use of High Performance Computing for the Rigorous Estimation of Very High Degree Spherical Harmonic Gravity Field Models. In U. Marti (Ed.), Gravity, Geoid and Height Systems (GGHS 2012), IAG Symposia (Vol. 141, pp. 27–33). Springer.
Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., & Schuh, W.-D. (2014). EGM_TIM_RL05: An independent Geoid with Centimeter Accuracy purely based on the GOCE Mission. Geophysical Research Letters, 41(22), 8089–8099. https://doi.org/10.1002/2014GL061904
Krasbutter, I., Brockmann, J. M., Kargoll, B., & Schuh, W.-D. (2014). Adjustment of digital filters for decorrelation of GOCE SGG data. In F. Flechtner, N. Sneeuw, & W.-D. Schuh (Eds.), Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions. (Vol. 20, pp. 109–114). Springer.
Müller, S., Brockmann, J. M., & Schuh, W.-D. (2014). Consistent Combination of Gravity Field, Altimetry and Hydrographic Data. In U. Marti (Ed.), Gravity, Geoid and Height Systems (GGHS 2012), IAG Symposia (Vol. 141, pp. 267–273). Springer.
Pail, R., Albertella, A., Rieser, D., Brockmann, J. M., Schuh, W.-D., & Savcenko, R. (2014). Satellite Gravity Models and Their Use for Estimating Mean Ocean Circulation. In C. Rizos & P. Willis (Eds.), Earth on the Edge: Science for a Sustainable Planet, IAG Symposia (Vol. 139, pp. 275–281). Springer.
Brockmann, J. M., & Kargoll, B. (2012). Uncertainty assessment of some data-adaptive M-estimators. In N. Sneeuw, P. Novák, M. Crespi, & F. Sansò (Eds.), VII. Hotine-Marussi-Symposium, IAG Symposia (Vol. 137, pp. 87–92). Springer.
Koch, K. R., Brockmann, J. M., & Schuh, W.-D. (2012). Optimal regularization for geopotential model GOCO02S by Monte Carlo methods and multi-scale representation of density anomalies. Journal of Geodesy, 86, 647–660. https://doi.org/10.1007/s00190-012-0546-7
Brockmann, J., & Schuh, W.-D. (2011). Use of Massive Parallel Computing Libraries in the Context of Global Gravity Field Determination from Satellite Data. In L. Ouwehand (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X.
Krasbutter, I., Brockmann, J. M., Goiginger, H., Kargoll, B., Pail, R., & Schuh, W.-D. (2011). Refinement of the stochastic model of GOCE scientific data in along time series. In L. Ouwehand (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X.
Pail, R., Bruinsma, S., Miggliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansó, F., & Tscherning, C. C. (2011). First GOCE gravity field models derived by three different approaches. J Geodesy, 85(11), 819–843. https://doi.org/10.1007/s00190-011-0467-x
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., Rieser, D., Hausleitner, W., Maier, A., Krauss, S., Baur, O., Krasbutter, I., & Gruber, T. (2011). Combination of GOCE data with complementary gravity field information. In O. L (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X.
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., Mayrhofer, R., Krasbutter, I., & Mayer-Gürr, T. (2011). GOCE-only gravity field models derived from 8 months of GOCE data. In O. L (Ed.), Proceedings of the 4th international GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC, ISBN (Online) 978-92-9092-260-5, ISSN 1609-042X. http://www.spacebooks-online.com/product_info.php?cPath=104&products_id=17254
Brockmann, J. M., Kargoll, B., Krasbutter, I., Schuh, W.-D., & Wermuth, M. (2010). GOCE Data Analysis: From Calibrated Measurements to the Global Earth Gravity Field. In F. Flechtner, M. Mandea, T. Gruber, M. Rothacher, J. Wickert, & A. Güntner (Eds.), System Earth via Geodetic-Geophysical Space Techniques (pp. 213–229). Springer. http://www.springer.com/gp/book/9783642102271#
Brockmann, J. M., & Schuh, W.-D. (2010). Fast Variance Component Estimation in GOCE Data Processing. In S. P. Mertikas (Ed.), Gravity, Geoid and Earth Observation (pp. 185–193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_25
Krasbutter, I., Brockmann, J. M., Kargoll, B., & Schuh, W.-D. (2010). Stochastic model refinements for GOCE gradiometry data. BMBF Geotechnologien Science Report, 17, 70–76.
Pail, R., Goiginger, H., Mayerhofer, R., Schuh, W.-D., Brockmann, J. M., Krasbutter, I., Höck, E., & Fecher, T. (2010). GOCE gravity field model derived from orbit and gradiometry data applying the time-wise approach. In H. Lacoste-Francis (Ed.), ESA Living Planet Symposium Bergen, Proceedings. ESA-SP-686, ESA/ESTEC, ISBN (Online) 978-92-9221-250-6 ISSN 1609-042X.
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., & Gruber, T. (2010). Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314. https://doi.org/10.1029/2010GL044906
Schuh, W.-D., Brockmann, J. M., Kargoll, B., & Krasbutter, I. (2010). Adaptive Optimization of GOCE Gravity Field Modeling. In G. Münster, D. Wolf, & M. Kremer (Eds.), NIC Symposium, Proceedings (Vol. 3, pp. 313–320). Schriftenreihe des Forschungszentrums Jülich.
Schuh, W.-D., Brockmann, J. M., Krasbutter, I., & Pail, R. (2010). Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In H. Lacoste-Francis (Ed.), ESA Living Planet Symposium Bergen, Proceedings. ESA-SP-686, ESA/ESTEC, ISBN (Online) 978-92-9221-250-6 ISSN 1609-042X.
Brockmann, J. M., Kargoll, B., Krasbutter, I., Schuh, W.-D., & Wermuth, M. (2009). GOCE Data Analysis: From Calibrated Measurements to the Global Earth Gravity Field Observation of the Earth System from Space. Springer (Accepted).